期刊文献+

六自由度运动平台控制系统的神经网络优化 被引量:1

Optimal control system of 6-DOF motive platform based on neural network
下载PDF
导出
摘要 阐述了六自由度运动平台的控制原理,并根据控制系统的特点,提出采用基于RBF和BP神经网络来改进常规PID控制器实现系统控制性能。在该控制系统结构中,提出了在RBF网络辨识Jacobian的基础上,将BP神经网络引入了平台控制系统中PID控制器的控制参数在线整定的算法,最后给出了在MATLAB下的具体仿真算法。 This article described the principles of control system of 6-DOF motive platform, According to the characteristics of the control system a neural network controller was proposed for improving the control performance of the traditional PID controller. Tne configuration of the control system was based on RBF and BP neural networks.A new algorithm was put forward, in which parameters of the PID control was optimized online by BP network based on RBF network identifying the Jacobian matrix of the controlled plant. At last, the programming steps under Matlab platform were also mentioned.
作者 方艺 吴学杰
出处 《中国测试技术》 2006年第5期100-103,共4页 CHINA MEASUREMENT & TESTING TECHNOLOGY
关键词 六自由度运动平台 BP网络 RBF网络 PID控制 仿真 6- DOF motive platform BP neural networks RBF neural networks PID control Simulation
  • 相关文献

参考文献6

二级参考文献13

  • 1Karayiannis, Nicolaos B, Mi G W. Growing radial basis neural networks: Merging supervised and unsupervised learning with network growth techniques[J]. IEEE Trans. on Neural Networks, 1997,8(6):1492-1506. 被引量:1
  • 2Jin-quan Huang, F.L. lewis.Neural-network predictive control for nolinear dynamics systems with time-delay[J]. IEEE Trans. on neural networks.2003,2(14):377-389. 被引量:1
  • 3Hui Peng, Tohru ozaki and Valerie haggan et al. A parameter optimization method for radial basis function type models[J].IEEE Trans. on neural networks.2003,2(14):432-438. 被引量:1
  • 4Zhao Hong, Dang Kaifang, Lin Tingqi. A online-trained neural network controller for electro-hydraulic servo systems[C]. Proc. of the 4th world congress on intelligent control and automation. China, shanghai, 2004:2983-2986. 被引量:1
  • 5Gregory L. plett. Adaptive inverse control of linear and nonlinear systems using dynamic neural networks[J].IEEE Trans. on neural networks.2003,2(14):360-375. 被引量:1
  • 6陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002.. 被引量:115
  • 7Aldhiro Sakagneh, Toru Yamamoto. A Design of Predictive PID Control Systems Using GA and GMDH Network [A]. Proceedings of the 2002 IEEE International Conference on Control Applications.Sep.18-20, Glasgow Scotland UK. 2002, 266-271. 被引量:1
  • 8丁国锋,王孙安,林廷圻,周庆国.一种简单非线性PID控制在电液伺服系统中的应用研究[J].机床与液压,1997(3):23-24. 被引量:4
  • 9王旭东,邵惠鹤.RBF神经网络理论及其在控制中的应用[J].信息与控制,1997,26(4):272-284. 被引量:175
  • 10阎杰.电液伺服加载系统的自适应 PID 控制[J].西北工业大学学报,1998,16(1):56-60. 被引量:14

共引文献54

同被引文献9

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部