期刊文献+

面向校园网的IP地址逐步优化层次聚类算法 被引量:3

Campus-oriented stepwise-optimal hierarchical clustering algorithm of IP address
下载PDF
导出
摘要 对校园网主干数据流中IP地址进行聚类,可以得到网络用户访问地址的分布概况从而了解用户行为特征。已有聚类算法大都将IP地址作为普通数字考虑,忽略了其特征属性以致聚类结果不合理。为此提出一种改进算法:首先基于最长前缀匹配和改进的最近邻规则算法得到初始聚类,然后运用逐步优化层次聚类的思想进一步聚合最靠近子类,最终得到基于IP地址特征属性的聚类。实验结果表明该算法与以往算法相比,提高了聚类效果,具有较好的准确性和可行性。 The cluster analysis of IP addresses can reveal useful knowledge for profiling of traffic flows and user behavior. However, the popular clustering algorithms were not applicable directly to IP addresses of the campus network traffic flows. The clusters which were generated by generic algorithms were inconsistent with the IP addresses partition and difficult to interpret. To overcome the shortcoming of the current algorithms which neglect the characteristics of IP addresses, a new algorithm which could effectively improve IP addresses clustering was proposed. Firstly, the initial clusters were got by adopting the longest prefix algorithm and the nearest neighbor clustering algorithm. Then the thought of stepwise-optimal hierarchical clustering was applied to merge the nearest groups of initial clusters. The similarity between initial clusters was determined by the longest prefix of IP addresses contained in these clusters. Finally, the algorithm automatically and meaningfully yielded clusters which were in accord with the characteristics of IP addresses on traffic flows. The results show that the proposed algorithm is accurate and effective in clustering IP addresses and robust to the input sequence of data.
出处 《计算机应用》 CSCD 北大核心 2007年第8期1862-1864,1867,共4页 journal of Computer Applications
基金 江苏省教育厅高校科学研究基金资助项目(03KJD520073)
关键词 IP地址聚类 最近邻规则 最长前缀匹配 逐步优化的层次聚类 IP address clustering nearest neighbor nile Longest Prefix Match (LPM) stepwise-optimal hierarchical clustering
  • 相关文献

参考文献9

  • 1DUNHAM M H.Data mining:introductory and advanced topics[M].Beijing:Tsinghua University Press,2003. 被引量:1
  • 2FREITAS A A.Data mining and knowledge discovery with evolutionary algorithms[M].Berlin:Springer-Verlag,2002. 被引量:1
  • 3KRISHMA K,MURTY M N.Genetic k means algorithm[J].IEEE Transactions on Systems,Man and Cybernetics,Part B,1999,29(3):433-439. 被引量:1
  • 4ESTAN C,SAVAGE S,VARGHESE G.Automatically inferring patterns of resource consumption in network traffic[C]// Proceedings of the ACM SIGCOMM 2003.[S.l.]:ACM Press,2003:137-148. 被引量:1
  • 5VAARANDI R.A data clustering algorithm for mining patterns from event logs[C]// Proceedings of the 2003 IEEE Workshop on IP Operations and Management.[S.l.]:IEEE Press,2003:119-126. 被引量:1
  • 6WALDVOG M.Fast longest prefix matching:algorithms analysis and applications[D].Zurich:ETH,Department of Electrical Engineering,2002. 被引量:1
  • 7DUDA R O,HART P E,STORK D G.Pattern classification[M].2nd ed.Beijing:China Machine Press,2004. 被引量:1
  • 8KARIM A,AHMAD I,JAMI S I.Cluster analysis of traffic flows on a campus network[C]// Proceedings of the 24th IASTED International Multi-Conference,Artificial Intelligence and Applications.Austria:ACTA Press,2006:416-421. 被引量:1
  • 9KRISHNAMURTHY B,WANG J.On network aware clustering of web clients[C]// Proceedings of the ACM SIGCOMM 2000.[S.l.]:ACM Press,2000. 被引量:1

同被引文献18

  • 1赵金生.P2P业务对我国互联网业务的发展影响[J].电信网技术,2006(2):71-73. 被引量:4
  • 2潘莹,梁京章,黎慧娟.基于K-means算法的校园网用户行为聚类分析[J].计算技术与自动化,2007,26(1):66-69. 被引量:10
  • 3SHULZE H, MOCHALSKI K. Internet study 2008/2009[ EB/OL]. [2010 - 06 - 25]. http://www. ipoque, com/study/ipoque-Internet-Study438-09. pdf. 被引量:1
  • 4PeerApp white paper: Comparing P2P solutions[EB/OL]. [2010 - 06 - 25]. http://www. peerapp. com/. 被引量:1
  • 5SALEH O, HEFEEDA M. Modeling and caching of peer-to-peer traffic[ C]// Proceedings of the 2006 14th IEEE International Conference on Network Protocols. Washington, DC: IEEE Computer Society, 2006:249 -258. 被引量:1
  • 6YE MINJIANG, WU JIANPING, XU KE. Cashing the P2P traffic in ISP network[ C]// IEEE International Congerence on Communications. Washington, DC: IEEE Computer Society, 2008:5876 -5880. 被引量:1
  • 7XIE H Y, RICHARD Y, KRISHNAMURTHY A, et al. P4P: Provider portal for applications [ C]// Proceedings of the ACM SIG- COMM 2008 Conference on Data Communication. New York: ACM, 2008:351-362. 被引量:1
  • 8CHOFFNES D R, BUSTAMANTE F E. Taming the torrent: A practical approach to reducing cross-ISP traffic in peer-to-peer systems [J]. ACM SIGCOMM Computer Communication Review, 2008, 38 (4) : 363 -374. 被引量:1
  • 9BINDAL R, CAO P, CHAN W, et al. Improving traffic locality in BitTorrent via biased neighbor selection[ C]// IEEE International Conference on Distributed Computing Systems. Washington, DC: IEEE Computer Society, 2006:1063 -6927. 被引量:1
  • 10Sniffer Portable [ EB/OL]. [ 2010 - 06 - 25]. http://www, sniffer, net. cn/product/product_line/sniffer - portable - professional/. 被引量:1

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部