期刊文献+

人工内分泌机制在最近邻规则约减中的应用 被引量:2

Nearest Neighbor Rule Condensation Algorithm Based on Artificial Endocrine System
下载PDF
导出
摘要 当训练样本集规模过大时,最近邻分类规则约减过程是一个耗时的过程.目前,常见的约减算法往往存在计算成本过高、约减过程难于并行化等问题.针对该问题,文中将人工内分泌机制引入到最近邻规则的约减过程中,保留不同类规则边界上的边界规则,规则的约减规模通过晶格的粒度来设定.该方法可以在分割–约减–合并框架下获得较高的一致性约减子集,从而使规则的约减过程并行化,缩短约减时间.用11个不同的数据集进行仿真实验的结果显示,该方法简单而有效,较好地解决了大样本集的约减问题. The main disadvantage in most prototype reduction algorithms is the excessive computational cost especially when the prototype size is large. To deal with the problem, we present a new prototype reduction method in which an artificial endocrine system is embedded. The method remains only for points on boundaries between different classes. The amount of reduced rules of the reference set can be revised by granularity of the lattice. The proposed method can get a consistent subset in a divide-reduce-coalesce manner, making it more efficient and effective than other algorithms. The proposed approach has been tested using 11 different datasets. The experiments show that the algorithm can give correct results when the size of data.set is large.
出处 《应用科学学报》 EI CAS CSCD 北大核心 2012年第4期397-407,共11页 Journal of Applied Sciences
基金 国家自然科学基金(No.60873035 No.61073091) 陕西省自然科学基金(No.2010JM8028) 西安理工大学优秀博士学位论文研究基金(No.116-211102)资助
关键词 最近邻规则 人工内分泌机制 约减 一致性子集 nearest neighbor rule artificial endocrine system condensation consistent subset
  • 相关文献

参考文献22

  • 1JIANG Liangxiao, ZHANG H, CAI Zhihua. A novel bayes model: hidden Naive Bayes [J]. IEEE Trans- actions on Knowledge and Data Engineering, 2009, 21(10): 1361-1371. 被引量:1
  • 2YANG J M, Yu P T, Kuo B C. A nonparametric fea- ture extraction and its application to nearest neigh- bor classification for hyperspectral image data [J]. IEEE Transactions on Geoscience and Remote Sens- ing, 2010, 48(3): 1279-1293. 被引量:1
  • 3HART P E. The condensed nearest neighbor rule [J]. IEEE Transactions on Information Theory, 1968, 14(3): 515-516. 被引量:1
  • 4DEV! F S, MURTY M N. An incremental prototype set building technique [J]. Pattern Recognition, 2002, 35(2): 505-513. 被引量:1
  • 5MITRA P, MURTHY C A, PAL S K. Density-based multiscale data condensation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(6): 734-747. 被引量:1
  • 6KARACALI B, KRIM n. Fast minimization of struc- tural risk by nearest neighbor rule [J]. IEEE Trans- action on Neural Networks, 2003, 14(1): 127-134. 被引量:1
  • 7ANGIULLI F. Condensed nearest neighbor data do- main description [J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2007, 29(10): 1746-1758. 被引量:1
  • 8ANGIULLI F, FOLINO C. Distributed nearest neighbor-based condensation of very large data sets IJ]. IEEE Transactions on Knowledge and Data En- gineering, 2007, 19(12): 1593-1606. 被引量:1
  • 9MARCHIOR! E. Hit miss networks with applications to instance selection [J]. Journal of Machine Learning Research, 2008, 9: 997-1017. 被引量:1
  • 10FAYED H A, ATIYA A F. A novel template reduc- tion approach for the k-nearest neighbor method [J]. IEEE Transactions on Neural Networks, 2009, 20(5): 890-896. 被引量:1

二级参考文献12

  • 1刘宝,张中炜,丁永生.基于生长激素双向调节原理的解耦控制[J].东南大学学报(自然科学版),2006,36(S1):5-8. 被引量:3
  • 2Wei-Min Shen,Peter Will,Aram Galstyan,Cheng-Ming Chuong.Hormone-Inspired Self-Organization and Distributed Control of Robotic Swarms[J].Autonomous Robots.2004(1) 被引量:1
  • 3Rabunal J R,Dorrado J.Artificial Neural Networks in Real-life Applications[]..2005 被引量:1
  • 4Ihara H,Mori K.Autonomous decentralized computer control systems[].Computer.1984 被引量:1
  • 5Miyamoto S,Mori K,Ihara H, et al.Autonomous decentralized control and its application to the rapid transit system[].Computers in Industry.1984 被引量:1
  • 6Mori K.Autonomous decentralized system technologies and their application to train transport operation system[].High Integrity Software.2001 被引量:1
  • 7Shen W M,Chuong C M,Will P.Digital hormone models for self-organization[].Proceedings of the th International Conference on Artificial Life.2002 被引量:1
  • 8Bayindir L,Sahin E.A review of studies in swarm robotics[].Turk J Elec Eng & Comp Sci.2007 被引量:1
  • 9Sugano S,Ogata T.Emergence of mind in robots for human interface—research methodology and robot model[].Proceedings of IEEE International Conference on Robotics and Automation.1996 被引量:1
  • 10Huang G R.Research on artificial endocrine models and its applications[]..2003 被引量:1

共引文献1

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部