摘要
设C是完备凸度量空间(X,ρ)的一个非空闭凸子集,S,T是C上的两个自映射,在S,T具有性质(A)或(B)的条件下,当S,T生成的Ishikawa迭代序列强收敛时,则其收敛点为S与T的公共不动点;当S与T的公共不动点非空时,则由S,T生成的Ishikawa迭代序列强收敛到S,T的唯一公共不动点。文章的结论改善并推广了部分作者的相关结果。
Let C be the nonempty convex subset of a complete convex metric space,S and T are two selfmappings on C and let S,T satisfy condition(A) or(B).If the Ishikawa iterate process from S and T converges,then the convergent point is the only common fixed point of S and T;if the common fixed point of S and T is nonempty,then the Ishikawa iterate process from S and T converges to the only common fixed point.The results presented in this paper improves and generates the related results in other papers[see:1,2,3,4,5,7,8].
出处
《贵州师范大学学报(自然科学版)》
CAS
2007年第3期66-68,共3页
Journal of Guizhou Normal University:Natural Sciences
基金
国家自然科基金资助项目(10171087)
淮海工学院院级科研资助项目(Z200404C)