期刊文献+

安钢FSF电极智能预测建模及应用研究

Intelligent prediction modeling and application research on the Angang FSF electrode
原文传递
导出
摘要 交流电弧炉电极控制系统是一个多变量、非线性、参数时变、复杂强耦合系统,经典的控制策略难以获得优良的性能。为此从安钢FSF电极控制的实际应用出发,提出了1种变结构遗传Elman网络预测建模方法,其中改进的混和遗传算法用来对网络结构和权值及自反馈增益的同步动态寻优。并将基于BP算法的改进Elman网络和本文提出的变结构遗传Elman网络都应用于交流电弧炉的电极模型的辨识中,通过基于安钢现场数据的计算机仿真实验表明:变结构遗传Elman网络克服了因复杂的辨识对象造成的网络辨识结构复杂问题和采用BP算法带来的权值训练缺陷;并具有更好的动态性能,逼近速度快,精度更高等优点。最后,把建立的模型应用于电极控制系统的参数整定上,取得了良好的控制效果,为电极控制提供了理论指导。 The electrode control system of alternating current electrical arc furnace is a multi - variable, nonlinear, parameter-time-varying and complicated strong coupling system and the classic control strategy is hard to acquire the good performance. Proceeding from actual application of FSF electrode control a variable structure Elman neural network prediction model is proposed based on a new hybrid generic algorithm in this paper. This improvized hybrid generic algorithm can simultaneously and dynamically optimize the network structure, the weights and self-feedback gain. The improvized BP algorithm based Elman neural network and the variable structure Elman neural network proposed in this paper are both applied in identification of the electrode model. The simulation experiment based on the on-site data of Anyang Steel indicate that the structure variable Elman neural network overcomes the problem of complex network structure, which is brought by the complexity of electrode control system and limitation of weights by BP algorithm. The proposed method based on a new hybrid generic algorithm is of better identification performance ,better dynamic characteristic, quicker approach speed and better precision. Finally, the model applied in parameter tuning of electrode control system obtains the good control result,thus providing a solid theoretical basis for electrode control.
出处 《炼钢》 CAS 北大核心 2007年第4期47-51,共5页 Steelmaking
基金 北京市重点自然科学基金资助项目(KZ200410005005)
关键词 FSF 电极 混和遗传算法 ELMAN神经网络 变结构 FSF electrode hybrid generic algorithm Elman neural network variable structure
  • 相关文献

参考文献12

二级参考文献47

  • 1张良杰,毛志宏,李衍达.遗传算法中突变算子的数学分析及改进策略[J].电子科学学刊,1996,18(6):590-595. 被引量:26
  • 2康立山 谢云 等.非线性并行算法--模拟退火算法[M].北京:科学技术出版社,1997.. 被引量:4
  • 3吴庆海.热轧宽带钢板形控制模型及策略的研究:学位论文[M].北京:北京科技大学,2001.. 被引量:1
  • 4谭真 郭广文.工程合金热处理[M].北京:冶金工业出版社,1994.137. 被引量:1
  • 5邓自立,动态系统分析及其应用,1985年 被引量:1
  • 6高桥昭一,电热,1988年,37期,49页 被引量:1
  • 7Ljung. L. Issue in system identification [J]. IEEE Control Systems Magazine, 1991, 11(1): 25-29. 被引量:1
  • 8Cheng Y C, Qi W M, Cai W Y. Dynamic properties of Elman and modified Elman neural network[C]. Beijing: 2002 International Conference on Machine Learning and Cybernetics, 2002. 被引量:1
  • 9Li Xiang, Chen Guanrong, Chen Zengqian et al. Chaotifying linear Elman networks[J]. IEEE Transactions on Neural Networks 2002,13(5): 1193-1199. 被引量:1
  • 10Pham D T, Liu X. Training of Elman networks and dynamic system modeling[J]. International Journal of System Science, 1996, 27 (2):221- 226. 被引量:1

共引文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部