期刊文献+

城市交叉路口交通流的优化控制 被引量:2

The Optimized Control of the Traffic Flow at Intersections
下载PDF
导出
摘要 针对城市交叉路口交通信号控制问题,提出了车流阻塞参数的定义,设计了基于模糊神经网络的智能控制方法。仿真实验结果表明,通过对交叉路口的车流量进行合理的优化控制,可以使道路通畅,提高交通效益,使之达到令人满意的结果。 In this article, the definition of vehicles blocking parameter is proposed, and an intelligent control method based on the fuzzy neural network in view of the intersection traffic signal control problem is designed. The simulation experiment result indicates that, by optimized controlling to the intersection traffic flow magnitude, it may make the path unobstructed, enhance the transportation benefit and achieve satisfactory result.
作者 唐艳
机构地区 德州学院机电系
出处 《农业装备与车辆工程》 2007年第8期45-47,50,共4页 Agricultural Equipment & Vehicle Engineering
关键词 模糊神经网络 交叉路口 交通流 fuzzy neural network intersection traffic flow
  • 相关文献

参考文献3

二级参考文献46

  • 1周德云,佟明安,陈新海.一种新的鲁棒自适应广义预测控制算法及鲁棒性分析[J].西北工业大学学报,1995,13(3):365-372. 被引量:7
  • 2李少远,刘浩,袁著祉.基于神经网络误差修正的广义预测控制[J].控制理论与应用,1996,13(5):677-680. 被引量:35
  • 3舒迪前.预测控制系统及其应用[M].北京:机械工业出版社,1998.. 被引量:42
  • 4C.R.Culter,B.L.Ramaker.Dynamic Matrix Control: A Computer Control Algorithm[C].Proceedings of Joint Automatic Control Conference,San Francisco,1980. 被引量:1
  • 5Clarke D W,Mohtadic,Tuffs P S.Generalized Predictive Control[J].Automatica,1987,23(1):137-160. 被引量:1
  • 6Yonghong Tan,Achiel R.Van Cauwenberghe.D-Step-Ahead Non-linear Predictors Using Neural Networks[C].14th World Congress of IFAC,Beijing,1999. 被引量:1
  • 7Su H.T,McAvoy T.J,Werbos P.J.Long-Term Predictive Chemical Processes Using Recurrent Neural Networks[J].Industrial Application of Chemical Engineering Research,1992,31(8):1338-1352. 被引量:1
  • 8Cloarec G.M.,Ringwood J.,Incorporation of Statistical Methods in Multi-step Neural Network Prediction Models[C].Proceedings of the 1998 IEEE International Joint Conference on Neural Networks,1998. 被引量:1
  • 9J Richalet.Model Predictive Heuristic Control: Applications to Industrial Processes[J].Automatic,1978,14(5):413-428. 被引量:1
  • 10Amir F.A,Samir I.S.A Comparison Between Neural Network Forecasting Techniques-Case Study: River Flow Forecasting[J].IEEE Trans.on Neural Network,1999,10(2):402-409. 被引量:1

共引文献78

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部