期刊文献+

一种交通信号自学习控制方法及仿真实现 被引量:5

A Self-learning Traffic Signal Control Approach and Simulation
下载PDF
导出
摘要 将模糊理论和机器学习应用到交通信号控制过程中,提出了一种基于遗传算法的单路口交通信号模糊控制方法。通过对到达车辆数目的模糊分类,将不同车辆数目到达情况下的信号控制决策方案以规则集的形式存储在知识库中,在交通信号控制过程中使用遗传算法对规则集进行改进。编制该控制方法的仿真程序,对该方法的控制效果与定时控制和感应控制进行了模拟比较,仿真实验的结果说明该方法的控制效果明显优于传统控制方式。 This paper applies fuzzy theory and machine learning in the process of traffic signal control. It provides a fuzzy traffic signal control approach based on genetic algorithms for isolated intersection. Through fuzzy classifying the number of arrived cars, this paper puts decision schemes of signal control in different conditions of cars?arriving as rule-set into knowledge-database. It applies genetic algorithm to improve the rule-sets in the course of traffic signal controlling. After programming the simulation program of this control approach and simulating, this paper compares the control effect of this new approach with fixed-time control method and actuated control method. The result of simulating illustrates that the effect of the new approach is obviously better than the traditional ones.
出处 《系统仿真学报》 CAS CSCD 2004年第7期1519-1524,1579,共7页 Journal of System Simulation
关键词 交通信号控制 自学习 交通仿真 遗传算法 模糊控制 traffic signal control self-learning traffic simulation genetic algorithm fuzzy control
  • 相关文献

参考文献9

  • 1[1]B.Burmeister,A.Haddadi,G.Matylis.Application of multi-agent system in traffic and transportation[J].IEEE Proceeding Software Engineering,1997,144(1): 51-60. 被引量:1
  • 2[3]Hakim Laichour ,etc.Traffic control assistance in connection nodes: multi-agent applications in urban transport systems.[A] International Workshop on Intelligent Data Application and Advanced Computing System: Technology and Application[C].Ukraine,Foros,2001.133-137. 被引量:1
  • 3马寿峰,李英,刘豹.一种基于Agent的单路口交通信号学习控制方法[J].系统工程学报,2002,17(6):526-530. 被引量:62
  • 4李秀平,刘智勇,吴今培.平面交叉路口的神经网络自学习控制方案[J].信息与控制,2001,30(1):76-79. 被引量:19
  • 5[6]Ella Bingham.Reinforcement learning in neuro-fuzzy traffic signal control[J].European Journal of Operational Research,2001,131:232-241. 被引量:1
  • 6[7]Danko A.Roozemond.Using intelligent agent for pro-active,real-time urban intersection control[J].European Journal of Operational Research,2001,131:293-301. 被引量:1
  • 7[8]Baher Abdulhai,Rob Pringle.Machine learning based adaptive signal control using autonomous Q-learning agent [A].Proceeding of the IASTED International Conference.Intelligent Systems and Control[C].USA Honolulu,Hawaii,2000.320-327. 被引量:1
  • 8[10]Dusan Teodorovic,etc.Intelligent isolated intersection[A] IEEE International Fuzzy System Conference 2001[C].2001.276-279. 被引量:1
  • 9[11]Xiao-fen Chen,Zhong-ke Shi.Real-coded genetic algorithm for signal timings optimization of a single intersection[A].Proceeding of the First International Conference on Machine learning and Cybernetics.[C].Beijing,2002.1245-1248. 被引量:1

二级参考文献11

共引文献78

同被引文献26

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部