期刊文献+

基于写相关支持向量描述的入侵防护审计模型研究 被引量:2

Research on the security audit model in intrusion prevention based on write-related support vector data description
下载PDF
导出
摘要 设计了基于写相关支持向量描述的安全审计模型来实现一个新的单类分类器,对系统调用中"写性质"子集进行监视和分析,并以此训练单类分类器,使偏离正常模式的活动都被认为是潜在的入侵。该模型仅利用正常样本建立了单分类器,因此系统还具有对新的异常行为进行检测的能力。通过对主机系统执行迹国际标准数据集的优化处理,只利用少量的训练样本,实验获得了对异常样本100%的检测率,而平均虚警率接近为0。 The security audit model based on write-related SVDD was designed to resolve the one-class problem. Once the classifier has been trained using the write-related subset, all activities deviated from the normal patterns are classified as potential intrusion. The proposed one-class classification algorithms can be implemented to build up an anomaly detection system by using only normal samples and the algorithms also makes the security audit system detect the new anomaly behaviors. In the experiments, the One-class classifier acquires nearly 100% detection rate and average zero false alarm rate for sequences of system calls based on a small training dataset.
出处 《通信学报》 EI CSCD 北大核心 2007年第7期8-14,共7页 Journal on Communications
基金 国家自然科学基金资助项目(60603029) 江苏省自然科学基金资助项目(BK2005009)~~
关键词 入侵防护 入侵检测 安全审计 单类分类器 写相关支持向量描述 intrusion prevention intrusion detection security audit one-class classifier write-related support vector datadescription
  • 相关文献

参考文献1

二级参考文献15

  • 1Christina Warrender,Stephanie Forrest,Barak Pearlmutter.Detecting intrusion using system calls:Alternative data models[J].Proceedings of the 1999 IEEE Symposium on Security and Privacy,1999:133-145. 被引量:1
  • 2Wu-FTPd Remote Heap Overflow Exploit (In Java) [CP/OL].Available at http://www.securiteam.com/exploits/5KP0S2A7FY.html,2002-06-28. 被引量:1
  • 3Stefan Axelsson.The base-rate fallacy and its implications for the difficulty of intrusion detection[A].Proceedings of the 6th ACM Conference on Computer and Communications Security[C].Kent Ridge Digital Labs,Singapore:ACM Press,November 1-4,1999.1-7. 被引量:1
  • 4Alexander Yurchenko.Another sendmail exploit [CP/OL].Available at http://cert.uni-stuttgart.de/archive/bugtraq/2001/08/msg00336.html,2001-08. 被引量:1
  • 5Barton P Miller,et al.A Re-Examination of the Reliability of UNIX Utilities and Services[R].Department of Computer science,university of Wisconsin,1995. 被引量:1
  • 6Dorothy E Denning.An intrusion-detection model[J].IEEE Transactions on Software Engineering,1987,13(2):222-232. 被引量:1
  • 7Kahn C,P porras,S Stanford-Chen,B Tung.A Common Intrusion Detection Framework[Z].Submitted to Journal of Computer Security,2000. 被引量:1
  • 8S Forrest,S A Hofmeyr,A Somayaji,T A Longstaff.A sense of self for unix processes[A].Proceedings of 1996 IEEE Symposium on Computer Security and Privacy[C].Los Alamitos,CA:IEEE Computer Society Press,1996.120-128. 被引量:1
  • 9S Forrest,S Hofmeyr,A Somayaji.Computer immunology[J].Communications of the ACM,1997,40(10):88-96. 被引量:1
  • 10Steven A Hofmeyr,Stephanie Forrest,Anil Somayaji.Intrusion detection using sequences of system calls[J].Journal of Computer Security (6),1998,3:151-180. 被引量:1

共引文献9

同被引文献23

  • 1关健,刘大昕.基于主成分分析的无监督异常检测[J].计算机研究与发展,2004,41(9):1474-1480. 被引量:7
  • 2诸葛建伟,王大为,陈昱,叶志远,邹维.基于D-S证据理论的网络异常检测方法[J].软件学报,2006,17(3):463-471. 被引量:56
  • 3谷雨,徐宗本,孙剑,郑锦辉.基于PCA与ICA特征提取的入侵检测集成分类系统[J].计算机研究与发展,2006,43(4):633-638. 被引量:25
  • 4Almgren K, Jonsson E. Using active learning in intrusion detection[C]//17th IEEE Computer Security Foundations Workshop (CSFW' 04). Washington, DC: IEEE Computer Society,2004. 被引量:1
  • 5Warrender C, Forrest S, Pearlmutter B. Detecting intrusions using system calls: alternative data models[J]. IEEE Computer Society, 1999:133-145. 被引量:1
  • 6Kim B J, Kim I K. Kernel based intrusion detection system[C]//Fouth Annual ACIS International Conference on Computer and Information Science (ICIS' 05). Washington, DC: IEEE Computer Society, 2005. 被引量:1
  • 7Chimphlee W, Abdullah A H, Sap M N M, et al. Anomaly based intrusion detection using fuzzy rough clustering [C] //2006 International Conference on Hybrid Information Technology Voll ( ICHIT' 06 ). Washington, DC : IEEE Computer Society, 2006. 被引量:1
  • 8Ozyer T, Alhajj R, Barker K. Intrusion detection by integrating boosting genetic fuzzy classifier and data mining criteria for rule pre screening[J]. Journal of Network and Computer Applications, 2007,30 (1) : 99-113. 被引量:1
  • 9Valdes A, Skinner K. Probabilistic alert correlation [C]//The 4th Int'l Symposium on Recent Advances in Intrusion Detection ( RAID 2001 ). London: Springer Verlag, 2001. 被引量:1
  • 10Gionis A, Mannila H, Tsaparas P. Clustering aggregation[C]//21st International Conference on Data Engineering ( ICDE' 05 ). Washington, DC : IEEE Computer Society, 2005. 被引量:1

引证文献2

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部