期刊文献+

基于主成分分析的无监督异常检测 被引量:7

Unsupervised Anomaly Detection Based on Principal Components Analysis
下载PDF
导出
摘要 入侵检测系统在训练过程中需要大量有标识的监督数据进行学习 ,不利于其应用和推广 为了解决该问题 ,提出了一种基于主成分分析的无监督异常检测方法 ,在最小均方误差原则下学习样本的主要特征 ,经过压缩和还原的互逆过程后能最大限度地复制样本信息 ,从而根据均方误差的差异检测出异常信息 构建的仿真系统经过实验证明 ,基于主成分分析的无监督异常检测方法能够在无需专家前期参与的情况下检测出入侵 。 Intrusion detection systems need a mass of the labeled data in the process of training It hampers the application and popularity of traditional IDSs A study was conducted to realize the automation of the learning process of the detection models where the training data is unsupervised A novel method of unsupervised anomaly detection based on principal components analysis (PCA) is presented The main characteristics of the training samples are learned under the principle of least mean square errors The information of the samples is duplicated in the process of encoding and decoding The anomaly behaviors can be detected according to the anomaly factor defined by the square errors between the original vector and the resultant one The experiment of the simulation system proves that the method of unsupervised anomaly detection based on PCA does not need the participation of experts in the prophase The experimental result shows its effectiveness
作者 关健 刘大昕
出处 《计算机研究与发展》 EI CSCD 北大核心 2004年第9期1474-1480,共7页 Journal of Computer Research and Development
关键词 网络安全 异常检测 无监督学习 主成分分析 network security anomaly detection unsupervised learning principal components analysis
  • 相关文献

参考文献10

  • 1D E Denning. An intrusion detection model. IEEE Trans on Software Engineering, 1987, 139(2): 222~232 被引量:1
  • 2N Ye, S M Emran, Q Chen, et al. Multivariate statistical analysis of audit trails for host-based intrusion detection. IEEE Trans on Computers, 2002, 51(7): 810~820 被引量:1
  • 3Y F Jou, F Gong, C Sargor, et al. Design and implementation of a scalable intrusion detection system for the protection of network infrastructure. DARPA Information Survivability Conference and Exposition, Hilton Head Island, SC, 2000 被引量:1
  • 4T Lane, E B Carla. An empirical study of two approaches to sequence learning for anomaly detection. Machine Learning, 2003, 51(1): 73~107 被引量:1
  • 5J M Bonifacio, A M Cansian, A C Carvalho, et al. Neural networks applied in intrusion detection systems. In: Proc of the IEEE World Congress on Computational Intelligence (WCCI'98). Oakland, CA: IEEE Computer Society Press, 1998. 205~210 被引量:1
  • 6S Forrest, A S Perrelason, L Allen, et al. Self-Nonself discrimination in a computer. In: J Rushby, C Meadows, eds. Proc of the 1994 IEEE Symp on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1994. 202~212 被引量:1
  • 7W Lee, S J Stolfo. A data mining framework for building intrusion detection model. In: L Gong, M K Reiter, eds. Proc of the 1999 IEEE Symp on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 120~132 被引量:1
  • 8E Eskin. Sparse sequence modeling with applications to computational biology and intrusion detection: [Ph D Dissertation]. New York: Columbia University, 2002 被引量:1
  • 9范金城, 梅长林. 数据分析. 北京: 科学出版社, 2002 (Fan Jincheng, Mei Changlin. Data Analysis(in Chinese). Beijing: Science Press, 2002) 被引量:1
  • 10R Hecht-Nielsen. Replicator neural networks for universal optimal source coding. Science, 1995, 269(9): 1860~1863 被引量:1

同被引文献74

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部