期刊文献+

黄河干流缺水决策树模型研究 被引量:1

Study on Decision-Making Tree Model of Water Deficiency of the Main Yellow River
下载PDF
导出
摘要 以黄河干流上的贵德、兰州、河口镇、龙门、三门峡、花园口等6个主要水文站为节点,通过径流量频率分析,分别研究了各节点缺水状态。把各节点频率为50%的来水量作为缺水的基准,将缺水状态分为5个等级,以天然径流系列数据为样本,以贵德站为例建立了节点缺水决策树模型。决策树对观测样本的分类、预测直观明了,通过观测节点月径流量,可实现节点缺水状态的滚动预报。 The paper respectively studies the water deficiency state of each nodal point by taking the six main hydrometric stations of Guide,Lanzhou,Hekouzhen,Longmen,Sanmenxia and Huayuankou situated on the main Yellow River as nodal points and through runoff frequency analysis.It takes 50% coming water of each nodal point frequency as the standard of deficiency,divides water deficiency state into 5 grades,takes natural flow series data as a sample and establishes a decision-making tree model of nodal point water deficiency by taking Guide Station as an example.The decision-making tree is visual and clear for the classification of an observed sample and can achieve rolling forecast of water deficiency state of nodal points through nodal point monthly runoff observation.
作者 吴新 邓晓青
出处 《人民黄河》 CAS 北大核心 2007年第6期25-27,共3页 Yellow River
基金 国家自然科学基金资助项目(50679070)
关键词 年径流量 月径流量 缺水状态 决策树 黄河 annual runoff,monthly runoff,water deficiency state,a decision-making tree,the Yellow River
  • 相关文献

参考文献6

  • 1刘光文主编..水文分析与计算[M].北京:水利电力出版社,1989:250.
  • 2吴新..跨流域调水理论和随机配水模型研究[D].西安理工大学,2006:
  • 3Cai X , M W Rosegrant. Optional water development strategies for the Yellow River Basin: Balancing agricultural and ecological water demands [ J ]. Water Resources Research, 2003,40(10). 被引量:1
  • 4Huang Wen- cheng, Chou Chia- Ching. Drought early warning system in reservoir operation: theory and practice [ J ]. Water Resources Research, 2005, 41 (11 ). 被引量:1
  • 5Huang Wen - Cheng, Lun - Chin Yuan. A drought early warning system on real -time multireservoir operations [ J ]. Water Resources Research, 2004, 40 (6). 被引量:1
  • 6Quinlan J R. Simplifying decision trees [ J ]. International Journal of Man- Machine Studies, 1987 (27). 被引量:1

同被引文献13

  • 1李慧,余明.基于决策树模型的湿地信息挖掘与结果分析[J].地球信息科学,2007,9(2):60-64. 被引量:20
  • 2Hem J A. Study and interpretation of natural water [ M ]. Water Supply Paper 2254. Reston, VA : United States Geol. Survey, 1985. 被引量:1
  • 3Alley W M. Regional ground-water quality [ M ]. Van Nostrand Rheinhold. New York: Wiley, 1993. 被引量:1
  • 4Spruill T B, Showers W J, Howe S S. Application of classification-tree methods to identify nitrate sources in ground water [J]. J Environ Qual, 2002, 31:1 538- 1 549. 被引量:1
  • 5Wilkinson L. Classification and regression trees [ M ]. Chicago: SPSS Inc, 2000. 被引量:1
  • 6Breiman L J, Friedman J H, Olshen R A et al. Classification anti regression trees [ M ]. New York: Chapman and Hall/CRC, 1984. 被引量:1
  • 7Han J W, Kamber M. Data mining: Concepts and techniques [ M]. San Francisco: Morgan Kaufmann Publisher, 2001. 被引量:1
  • 8StatSoft. Electronic statistics textbook [ EB/OL]. ( 2001 ) [ 2013 - 10-24 ] http ://www. statsoft, com/. 被引量:1
  • 9Quinlan J R. C4. 5: Programs for Machine Learning [ M ]. San Mateo, CA: Morgan Kaufmann Publishers. 1993. 被引量:1
  • 10Shannon C. A mathematical theory of communication [J]. The Bell Systems Technical Journal, 1948, 27: 379-423. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部