期刊文献+

GH4133高温合金激光深熔焊温度场数值模拟 被引量:4

Numerical simulation on temperature field of laser deep penetration welding of GH4133 alloy
下载PDF
导出
摘要 对航空材料GH4133高温合金激光深熔焊接过程进行了有限元数值模拟分析,建立了高斯旋转曲面体热源的热输入模型,得到了基于小孔模型的温度梯度曲线分布。结果表明,激光焊接小孔深度方向的热传导速率大于小孔径向的热传导速率;小孔前端的热梯度远大于小孔后端,小孔和熔池形状均为长椭圆形;距离焊缝不同位置处各点的升温过程相比焊缝中心具有延迟性,且温度峰值大大降低。 The laser deep penetration welding process of GH4133 high-temperature alloy was simulated by finite element method. The heat input model was founded of a body heat source according to Gauss revolution curve face body heat source.The temperature distribution gradient curve was obtained.The result shows that the heat conduct rate in depth direction is larger than that in the radial of the keyhole,that the heat gradient in front of keyhole is larger than that in the back of keyhole,and that both the keyhole and the molten bath are in shape of oblong oval.Also the temperature rise in different position from welded seam is postponed compared with that in weld seam centre, and the temperature, peak value of them is reduction greatly.
出处 《电焊机》 2007年第7期21-24,共4页 Electric Welding Machine
基金 国家自然科学基金项目(50475093)
关键词 热源模型 温度梯度 小孔 gauss revolution curved face body heat source temperature gradient keyhole
  • 相关文献

参考文献5

二级参考文献38

  • 1陈家权,沈炜良,尹志新,肖顺湖.基于单元生死的焊接温度场模拟计算[J].热加工工艺,2005,34(7):64-65. 被引量:44
  • 2[3] UDOGUCHI T, WADA T. Thermal effect on low-cycle fatigue strength of steel. In: LITTLER D J eds. Thermal Stresses and Thermal Fatigue. London,1969.109-123. 被引量:1
  • 3[4] TARIS S, FUJINO M, HAJI T. Effect of mean temperature range on thermal fatigue strength of low carbon steel. J. Society Materials Science, Japan, 1973, 22:35. 被引量:1
  • 4[5] BEILING J, SLOT T. Effect of temperature and strain rate on low cycle fatigue resistance of AISI 304, 316 and 348 stainless steels. In: Fatigue at high temperature. ASTM STP 459. Lutharville-Timonium:1969:3-30. 被引量:1
  • 5[7] Engler-Pinto C C, Rezai-Aria F. Out-of-phase and in-phase thermo-mechanical fatigue behavior of IN738LC. Fatigue'96, 1996,2:831-836. 被引量:1
  • 6[9] JOOS R, ELZEY D M, ARZT E. Damage Mechanisms in an ODS-superalloy during isothermal and thermal-mechanical fatigue. In: BACHHELET E, BRUNETAUD R, COUTSOURADIS D eds. High temperature materials for power engineering. The Netherlands: Kluwer Academic, 1990,2,1173-1184. 被引量:1
  • 7[10] STRANGMAN T E. Thermal-mechanical fatigue life model for coated superalloy turbine components. Superalloys 1992. The Minerals Metals & Materials Society, 1992.795-804. 被引量:1
  • 8[11] REMY L. Fatigue life prediction under thermal-mechanical loading in a nickel-base superalloy. In: Thermo-mechanical fatigue behavior of materials, ASTM committee E9 on fatigue. ASTM STP 1186, 1993.3-16. 被引量:1
  • 9[12] CHATAIGNER E, FLRURY E, REMY L. Crack propagation and life prediction in a nickelbased superalloy under TMF conditions. In: BRESSERS J, REMY L eds. Proceedings of International symposium on fatigue under thermal and mechanical loading. The Netherlands: Kluwer Acadmic Publisher, 1995. 393-402. 被引量:1
  • 10[13] NEU R W, SEHITOGLU H. Thermomechanical fatigue, Oxidation and creep: Part II, Life Prediction. Metallurgical Transactions A, 1989. 20A(9): 1769-1783. 被引量:1

共引文献148

同被引文献50

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部