期刊文献+

S^3到CP^3中的等变极小浸入 被引量:2

Equivariant Minimal Immersion from S^3 into CP^3
下载PDF
导出
摘要 研究常曲率的3维球面S3=SU(2)到复射影空间CP3中的等变极小浸入,证明了这种浸入不存在介于CR和Lagrangian之间的浸入,只能是Lagrangian浸入,从而是全测地的。 The equivariant minimal immersion from the Euclidean sphere s^3 = SU(2) with constant curvature c into the complex projective space sp^3 is studied. It is proved that there is no immersion between CR and Lagrangian immersion, the immersion has to be Lagrangian and hence is totally geodesic.
机构地区 南昌大学数学系
出处 《南昌大学学报(理科版)》 CAS 北大核心 2007年第3期214-218,共5页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(10261006) 教育部全国优秀博士论文作者专项资金资助项目(200217) 江西省自然科学基金资助项目(0611080)
关键词 复射影空间 等变 Lagrangian子流形 极小浸入 complex projective space equivariant Lagrangian submanifold minimal immersion
  • 相关文献

参考文献8

  • 1Bolton J,Jensen GR,Rigoli M,et al.On Conformal Minimal Immersions of S2 into CPn[J].Math Ann,1988,279:599-620. 被引量:1
  • 2Li Z Q.Minimal S3 with Constant Curvature in CPn[J].J London Math Soc,2003,68(2):223-240. 被引量:1
  • 3Li Z Q,Tao Y.Equivariant Lagrangian Minimal S3 in CP3[J].Acta Math Sinica,2006,22(4):1 197-1 214. 被引量:1
  • 4Chen B Y.Riemannian Geometry of Lagrangian Submanifolds[J].Taiwan Residents J Math,2001,4:1-35. 被引量:1
  • 5Chen B Y,Dillen F,Verstraelen L,et al.An Exotic Totally Real Minimal Immersion of S3 in CPn and its Characterization[J].Proc Royal Soc Edinburgh Ser A,Math,1996,126:153-165. 被引量:1
  • 6Jenson G R,Liao R.Families of Flat Minimal tori in CPn[J].J Diff Geom,1995,42:113-132. 被引量:1
  • 7Li Z Q,Huang A.Constant Curved Minimal CR 3-spheres in CPn[J].J Aust Math Soc,2005(79):1-10. 被引量:1
  • 8Takahashi T.Minimal Immersion of Riemannian Manifolds[J].J Math Soc Japan,1966(18):380-385. 被引量:1

同被引文献10

  • 1黎镇琦,周燕飞.S^3到CP^4中的等变弱Lagrangian极小浸入[J].南昌大学学报(理科版),2005,29(5):409-415. 被引量:3
  • 2Zhen Qi LI Yong Qian TAO.Equivariant Lagrangian Minimal S^3 in CP^3[J].Acta Mathematica Sinica,English Series,2006,22(4):1215-1220. 被引量:3
  • 3Bolton J,Jensen G R,Rigoli M,et al,On Conformal Minimal Immersion of S2into CP[J].Math.Ann.,1988,279:599-620. 被引量:1
  • 4Chen B Y.Riemannian Geometry of Lagrangian Submanifolds[J].Taiwan Residents J.Math,2001,4:1-35. 被引量:1
  • 5Li Z.Minimal S3with constant curvature in CPn[J].London Math.Soc.,2003,68(2):223-240. 被引量:1
  • 6Li Z,Huang A,Constant curved minimal CR3-spheres in CP n[J].J.Aust.Math.Soc.,2005,79:1-10. 被引量:1
  • 7Li Z,Ouyang C.Rigidity theorem of CR3-manifolds with constant curvature immersed minimally in CPn[C].Abstract of Short Communications and Poster Sessions,Beijing:Higher Education Press,2002. 被引量:1
  • 8Li Z,Tao Y.Equivariant Lagrangian minimal S3in CP3[J].Acta Math.Sinica:English Series.2003. 被引量:1
  • 9Takahashi T.Minimal immersion of Riemannian manifolds[J].J.Math.Soc.Japan,1966,18:380-385. 被引量:1
  • 10Wolfson J G.Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifold[J].J.Diff.Geom.,1988,27:161-178. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部