摘要
A new type oxidation resistance in situ Cr7 C3/γ-Fe ceramic composite coating was fabricated on hardened and tempered grade C steel by reactive plasma clad with Fe-Cr-C alloy powders. The oxidation resistance of the ceramic composite coating was investigated under the test condition of 900 ℃ and 50 hours. The results indicate that the coating has a rapidly solidified microstructure consisting of blocky primary Cr7 C3 and the inter-blocky Cr7 C3/γ-Fe eutectics and is metallurgically bonded to the hardened and tempered grade C steel substrate. The high temperature oxidation resistance of the coating is up to 1.9 times higher than that of grade C steel. The oxidation kinetics curve of the coating is conforming to the parabolic-rate law equation. The excellent oxidation resistance of the coating is mainly attributed to the continuous oxide films which consist of Cr203 and Fe203. The continuous oxide films can prevent the inner part of the coating from being further oxidized.
A new type oxidation resistance in situ Cr7 C3/γ-Fe ceramic composite coating was fabricated on hardened and tempered grade C steel by reactive plasma clad with Fe-Cr-C alloy powders. The oxidation resistance of the ceramic composite coating was investigated under the test condition of 900 ℃ and 50 hours. The results indicate that the coating has a rapidly solidified microstructure consisting of blocky primary Cr7 C3 and the inter-blocky Cr7 C3/γ-Fe eutectics and is metallurgically bonded to the hardened and tempered grade C steel substrate. The high temperature oxidation resistance of the coating is up to 1.9 times higher than that of grade C steel. The oxidation kinetics curve of the coating is conforming to the parabolic-rate law equation. The excellent oxidation resistance of the coating is mainly attributed to the continuous oxide films which consist of Cr203 and Fe203. The continuous oxide films can prevent the inner part of the coating from being further oxidized.