期刊文献+

基于g期望的二元Jensen不等式 被引量:2

Jensen's inequality of bivariate function for g expectation
下载PDF
导出
摘要 利用Girsanov变换,证明了当g是线性生成元时,g期望等价于经典的数学期望,此时,g期望关于一般二元凹函数的Jensen不等式成立,然后采用生成元表示定理,得到了若g期望关于一般二元凹函数的Jensen不等式成立,则生成元是线性的;最后证明了当且仅当g是次线性生成元时,g期望关于二元单调递增凹函数的Jensen不等式成立。 Using Girsanov transformation, the paper presents an attempt to prove that g expectation is equal to the classical expectation when g is a linear generator, thus Jensen' s inequality of general bivariate concave function for g expectation holds. Then the paper, by exploring the representation theorem for generators, leads to conclusion that g is linear when Jensen' s inequality of general bivariate concave function holds; it is proved that Jensen' s inequality of bivariate increasing concave function holds if and only if g is a sublinear generator.
出处 《黑龙江科技学院学报》 CAS 2007年第3期224-226,230,共4页 Journal of Heilongjiang Institute of Science and Technology
基金 国家自然科学基金项目(10671205)
关键词 倒向随机微分方程 g期望 JENSEN不等式 backward stochastic differential equation (BSDE) g expectation Jensen inequality
  • 相关文献

参考文献3

  • 1江龙..非线性数学期望[D].山东大学,2005:
  • 2江龙.基于g-期望的关于二元函数的Jensen不等式[J].山东大学学报(理学版),2003,38(5):13-17. 被引量:9
  • 3JIANG LONG,CHEN ZENGJING School of Mathematics and System Sciences, Shandong University, Jinan 250100, China. Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, Jiangsu,China. E-mail: jianglong@math.sdu.edu.cn School of Mathematics and System Sciences, Shandong University, Jinan 250100, China..ON JENSEN'S INEQUALITY FOR g-EXPECTATION[J].Chinese Annals of Mathematics,Series B,2004,25(3):401-412. 被引量:26

二级参考文献15

  • 1[1]Peng S. BSDE and related g-expectations[A]. El Karoui N, Mazliak L. Pitman Research Notes in Mathematics Series, No.364, Backward Stochastic Differential Equations [C]. Harlow: Addison Welsey Longman, 1997. 141~159. 被引量:1
  • 2[2]Briand P, Coquet F, Hu Y, Mémin J, Peng S. A converse comparison theorem for BSDEs and related properties of g-expectation[J]. Electon. Comm. Probab, 2000, 5: 101~117. 被引量:1
  • 3[3]Coquet F, Hu Y, Mémin J, Peng S. Filtration consistent nonlinear expectations and related g-expectation[J], Probab. Theory & Related Fields, 2002,123: 1~27. 被引量:1
  • 4[4]Chen Z, Epstein L. Ambiguity, risk and asset returns in continuous time[J]. Econometrica, 2002, 70:1403~1443. 被引量:1
  • 5[5]Pardoux E, Peng S. Adapted solution of a backward stochastic differential equation[J]. Systems Control Letters, 1990,14: 55~61. 被引量:1
  • 6[6]Peng S. A General Dynamic Programing Principle and Hamilton-Jacobi-Bellman Equation[J]. Stochastics, 1992, 38(2):119~134. 被引量:1
  • 7[7]El Karoui N, Peng S, Quence M C. Backward Stochastic Differential Equation in Finance[J]. Math. Finance 1997,7(1):1~71. 被引量:1
  • 8[1]Peng, S., BSDE and related g-expectations, Pitman Research Notes in Mathematics Series, 364, 1997,141-159. 被引量:1
  • 9[2]Chen, Z. & Epstein, L., Ambiguity, risk and asset returns in continuous time, Econometrica, 70(2002),1403-1443. 被引量:1
  • 10[3]Briand, P., Coquet, F., Hu, Y., Memin, J. & Peng, S., A converse comparison theorem for BSDEs and related properties of g-expectation, Electon. Comm. Probab., 5(2000), 101-117. 被引量:1

共引文献30

同被引文献12

  • 1JIANG LONG,CHEN ZENGJING School of Mathematics and System Sciences, Shandong University, Jinan 250100, China. Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, Jiangsu,China. E-mail: jianglong@math.sdu.edu.cn School of Mathematics and System Sciences, Shandong University, Jinan 250100, China..ON JENSEN'S INEQUALITY FOR g-EXPECTATION[J].Chinese Annals of Mathematics,Series B,2004,25(3):401-412. 被引量:26
  • 2范胜君.g-期望关于凸(凹)函数的Jensen不等式[J].数学年刊(A辑),2006,27(5):635-644. 被引量:3
  • 3孙秋霞.g-期望关于多元函数的Jensen不等式的必要条件[J].山东科技大学学报(自然科学版),2007,26(2):109-111. 被引量:2
  • 4PENG S G.BSDE and related g-expectations[C]//KAROUIE N,MAZLIAK L.Backward Stochastic Differential Equations Pitman Research Notes in Mathematics Series,Harlow:Addison Welsey Longman,1997,364:141-159. 被引量:1
  • 5PENG S G.Nonlinear expectations,nonlinear evaluations and risk measures[C]// FRITI'ELLI M,RUNGGALDIER W.Stochastic Methods in Finance.Lecture Notes in Mathematics.Berlin:Springer,2004(1856):165-253. 被引量:1
  • 6CHEN Z,CHEN T,DAVISON M.Choquet expectation and Peng'a g-expectation[J].The Annals and Probability,2005,33(3):1179-1199. 被引量:1
  • 7JIANG L.A note on g-expectation with comonotonic additivity[J].Statistics & Probability Letters,2006,76(7):1895-1903. 被引量:1
  • 8PARDOUX E,PENG S.Adapted solution of a backward stochas-tic differential equation[J].Systems and Control Letters,1990,14(1):55-61. 被引量:1
  • 9FAN S J.Moment inequality and Holder inequality for BSDEs[J].Acts Mathematicae Applicatae Sinica; English Series,2009,25(1):11-20. 被引量:1
  • 10FAN S J.A note on jensen's inequality for BSDEs[J].Acts Mathematics Sinica,2009,25(10):1 681-1 692. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部