摘要
考虑了1个特殊边界反馈下的Euler-Bernoulli梁方程,它的边界条件不符合一般的工程设计原则,因为共轭变量同时出现在同一边界上.使用Riesz基方法证明了该系统在通常的能量状态空间中是适定的,而且当时间趋于无穷时,系统的轨迹趋于零特征子空间.该例子说明,柔性结构振动控制的边界控制律的设计至少在理论上有更多的灵活性.
An Euler-Bernoulli beam equation subject to a special boundary feedback problem is consid ered. This boundary condition is not accord with the general principle in engineering practice, so that the conjugate variables can be assigned simultaneously at the same boundary. The Riesz basis approach is adopted to prove that the closed-loop system is well-posed in the usual energy state space and the trajectory approaches to the zero eigenspace of the system as time goes to infinity. The release of the engineering restriction gives more freedom in the design of boundary controls for the suppression of vibration of flexible structures.
出处
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2007年第3期126-133,共8页
Journal of Beijing University of Posts and Telecommunications