期刊文献+

一个特殊边界反馈下Euler-Bernoulli梁的适定性和稳定性

On the Well-Posedness and Stability of an Euler-Bernoulli Beam under a Special Boundary Feedback
下载PDF
导出
摘要 考虑了1个特殊边界反馈下的Euler-Bernoulli梁方程,它的边界条件不符合一般的工程设计原则,因为共轭变量同时出现在同一边界上.使用Riesz基方法证明了该系统在通常的能量状态空间中是适定的,而且当时间趋于无穷时,系统的轨迹趋于零特征子空间.该例子说明,柔性结构振动控制的边界控制律的设计至少在理论上有更多的灵活性. An Euler-Bernoulli beam equation subject to a special boundary feedback problem is consid ered. This boundary condition is not accord with the general principle in engineering practice, so that the conjugate variables can be assigned simultaneously at the same boundary. The Riesz basis approach is adopted to prove that the closed-loop system is well-posed in the usual energy state space and the trajectory approaches to the zero eigenspace of the system as time goes to infinity. The release of the engineering restriction gives more freedom in the design of boundary controls for the suppression of vibration of flexible structures.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2007年第3期126-133,共8页 Journal of Beijing University of Posts and Telecommunications
关键词 RIESZ基 C0-半群 EULER-BERNOULLI梁 边界控制 稳定性 Riesz basis C0-semigroup Euler-Bernoulli beam boundary control stability
  • 相关文献

参考文献11

  • 1Guo B Z,Yu R.The Riesz basis property of discrete operators and application to a Euler-Bernoulli beam equation with boundary linear feedback control[J].IMA J of Math Control Inform,2001,18(2):241-251. 被引量:1
  • 2Curtain R F,Zwart H J.An introduction to infinite dimensional linear system theory[M].New York:Springer-Verlag,1995. 被引量:1
  • 3Chen G,Coleman M P.Improving low order eigenfrequency estimates derived from the wave propagation method for an Euler-Bernoulli beam[J].J Sound Vibration,1997,204(4):696-704. 被引量:1
  • 4Naimark M A.Linear differential operators[M].New York:Frederick Ungar Publishing Company,1967. 被引量:1
  • 5Dunford N,Schwartz J T.Linear operators[M].Part Ⅲ.New York-London-Sydney:John Wiley & Sons,Inc,1971. 被引量:1
  • 6Locker J.Spectral theory of non-self-adjoint two-point differential operators[M].Rhode Island:[s.n.],2000. 被引量:1
  • 7Gohberg I C,Krein M G.Introduction to the theory of linear nonselfadjoint operators[J].Trans of Math Monographs Vol.18.AMS Providence,Rhode Island,1969. 被引量:1
  • 8Luo Z H,Guo B Z,Morgül O.Stability and stabilization of infinite dimensional systems with applications[M].London:Spring-Verlag,1999. 被引量:1
  • 9Shkalikov A A.Boundary value problems for ordinary differential equations with a parameter in the boundary conditions[J].J Soviet Math,1986,33:1311-1342. 被引量:1
  • 10Levin B Ya.Lectures on entire functions[M].Translations of Mathematical Monographs.Providence:American Mathematical Society,1996. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部