期刊文献+

一类阻尼Euler-Bernoulli梁方程整体解的适定性

The Well-posedness of the Global Solution for Damped Euler-Bernoulli Equation
下载PDF
导出
摘要 研究如下带阻尼Euler Bernoulli方程整体解的适定性utt+auxxxx+2but+cu=f(u), t 0,x∈[0,+∞).就一般非线性项f(u),在Sobolev空间C([0,+∞),Hs([0,+∞)))∩C1([0,+∞),Hs-1([0,+∞)))(s>12)中,给出了此方程初值问题解的存在及唯一性.当f(u)=u2时,则在空间C([0,+∞),L2([0,+∞)))∩C1([0,+∞),H-1([0,+∞)))中得到了该整体解的适定性. In this paper, the well-posedness of the global solution to a kind of the damped Euler-Bernoulli equation is established in the Sobolev space C([0,∞)),H^s([0,+∞)))∩C^1([0,+∞)),H^(s-1)([0,+∞)))(s>12). For a special nonlinear term, the well-posedness of the global solution is shown to be true in the following space C([0,+∞),L^2([0,+∞)))∩C^1([0,+∞),H^(-1)([0,+∞))).
作者 李楠 赖绍永
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2004年第4期335-338,共4页 Journal of Sichuan Normal University(Natural Science)
基金 四川省重点科研基金资助项目
关键词 Euler-Bernoulli梁方程 整体解 CAUCHY问题 Euler-Bernoulli equation Global solution Cauchy problem
  • 相关文献

参考文献4

二级参考文献15

  • 1赖绍永,数学年刊.A,1997年,18卷,5期,623页 被引量:1
  • 2Miles T W. Solitary Waves[J]. Ann Rev Fluid Mech,1980,12:11~43. 被引量:1
  • 3Milewski P A, Keller J B. Three-dimensional water waves[J]. Studies in Applied Math,1996,37:149~166. 被引量:1
  • 4Tsutsumi M, Matabashi T. On the Cauchy problem for the Boussinesq-type equation[J]. Math Japonica,1991,36:371~379. 被引量:1
  • 5Bona J, Sachs R. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation[J]. Commun Math Phys,1988,118:12~29. 被引量:1
  • 6Kalantarov V K, Ladyzhenskaya O A. The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types[J]. T Sov Maths,1978,10:53~70. 被引量:1
  • 7Levine H A, Sleeman B D. A note on the nonexistence of global solutions of initial-boundary value problems for the Boussinesq equation utt=3uxxxx+uxx-12(u2)xx[J]. J Math Anal Appl,1985,107:206~210. 被引量:1
  • 8Varlamov V V. On the Cauchy problems for the damped Boussinesq equation[J]. Differential and Integral Equations,1996,9(3):619~634. 被引量:1
  • 9Boussinesq J. Theorie des ondes et de remous qui se progragent le long d'un canal recangulaier horizontal, et communiquant au liquide contene dans ce cannal des vitesses sensiblement pareilles de la surface au fond[J]. J Math Pures Appl,1872,17:55~108. 被引量:1
  • 10Bona J, Sachs R. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation[J]. Commun Math Phys,1988,118:12~29. 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部