期刊文献+

基于免疫学原理降低交叉算子破坏性的研究 被引量:4

Towards less destructive crossover operator with immunity theory
下载PDF
导出
摘要 应用免疫原理设计免疫算子对交叉结果进行修复,将免疫算子作为“有导向的变异算子”取代经典演化算法中的“盲目的变异算子”,有目的地利用待求解问题的知识抑制优化过程中的退化现象,并应用于旅行商问题。实验结果表明了算法的有效性。 In this paper,we design the immunity operator to improve the crossover result by utilizing the immunity theory.As the "guided mutation operator" , the immunity operator substitutes the "blind mutation operator" in normal classic EA,to restrain the degenerate phenomenon during the evolutionary process.We examine the algorithm with examples of TSP and gain promising result.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第18期42-44,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60204001) 广西自然科学基金(the Natural Science Foundation of Guangxi Province of China under Grant No.0679018) 广西师范学院院前项目基金。
关键词 算法设计 交叉算子 免疫算子 旅行商问题 algorithm design crossover operator immunity operator travelling salesman problem
  • 相关文献

参考文献2

二级参考文献143

  • 1Yao X. A new simulated annealing algorithm, Int. J. Computer Math, 1995, 56: 161-168. 被引量:1
  • 2Glover F. Future paths for integer programming and links to artificial intelligence. Computers and Operations Research,1986, 5: 533-549. 被引量:1
  • 3Fogel D B, System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling. Needham Heights, MA 02194: Ginn Press, 1991. 被引量:1
  • 4Yao X, Liu Y. Evolving neural network ensembles by minimizagion of mutual information. International Journal of Hybrid Intelligent Systems, 2004, 1(1): 12 21. 被引量:1
  • 5Chandra A, Yao X. Evoiutionary framework for the construction of diverse hybrid ensembles, In Proc. the 13th European Symposium on Artificial Neural Networks (ESANN'2005),Bruges, Belgium, April 27-29, 2005, pp,253-258. 被引量:1
  • 6Chandra A, Yao X. DIVACE: Diverse and accurate ensemble learning algorithm. Lecture Notes in Computer Science,2004, 3177:619-625. 被引量:1
  • 7Chandra A, Yao X. Ensemble learning using multiobjective evolutionary algorithms, Journal of Mathematical Modelling and Algorithms, May 2005 (to appear). 被引量:1
  • 8Abbass H A. A memetic Pareto evolutionary approach to artificial neural networks. In Proc. the 14th Australian Joint Conference on Artificial Intelligence, Berlin, 2000, pp.1-12. 被引量:1
  • 9Liu Y, Yao X. Learning and evo]utlon by minimization of mutual information. Lecture Notes in Computer Science, 2002,2439: 495-504. 被引量:1
  • 10Chandra A, Yao X. Evolving hybrid ensembles of learning machines for better generalisation. Submitted to Neurocomputing, Elsevier, July 2005. 被引量:1

共引文献29

同被引文献39

引证文献4

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部