期刊文献+

改进PSO算法解决电力系统机组优化组合问题 被引量:3

Improved PSO Algorithm for Unit Commitment Optimization of Power System
下载PDF
导出
摘要 机组组合优化问题是一个大规模、离散、非线性的混合整数规划问题,所以求解比较困难,不容易找到理论上的最优解。在基本粒子群算法的基础上,使用一种空间收缩策略,加快了算法的收敛速度。同时为了避免算法出现“早熟”现象,让粒子不仅根据自身和同伴中的最好个体进行调整自己的飞行速度,并且向其他个体学习。通过该算法进行仿真计算,证明了该算法的有效性。 Unit commitment is a large - scale, dispersed and mixed - integer non - linear programming problem, so an improved PSO mechanism is suggested to deal with the equality and inequality in the conventional PSO is preserved. And a dynamic search - space reduction strategy is used to accelerate the optimization process. Also adjustment operator and adjustment sequence are introduced to reconstruct PSO algorithm by using the ideas of single node regulating algorithm. Numerical simulation results show the effectiveness of the proposed method.
作者 蒲维 滕欢
出处 《四川电力技术》 CAS 2007年第3期16-18,共3页 Sichuan Electric Power Technology
关键词 粒子群优化算法 机组组合 电力系统 particle swarm optimization unit commitment power system
  • 相关文献

参考文献17

二级参考文献104

共引文献559

同被引文献33

  • 1李炳宇,萧蕴诗,汪镭.PSO算法在工程优化问题中的应用[J].计算机工程与应用,2004,40(18):74-76. 被引量:53
  • 2文劲宇,刘沛,程时杰.遗传算法及其在电力系统中的应用(上)[J].电力系统自动化,1996,20(10):57-60. 被引量:29
  • 3夏小翔,曾建潮,高慧敏.基于元胞自动机的小生境微粒群算法[J].计算机工程与应用,2007,43(11):66-68. 被引量:8
  • 4Alinejad-Beromi Y, Sedighizadeh M, Sadighi M. A particle swarm optimization for sitting and sizing of distributed generation in distribution network to improve voltage profile and reduce THD and losses[C]. //Universities Power Engineering Conference, UPEC, 43rd International, 2008. 被引量:1
  • 5Abu-Mouti F S, EI-Hawary M E. A new and fast power flow solution algorithm for radial distribution feeders including distributed generations[J]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2007.. 2668-2673. 被引量:1
  • 6Parsopoulos Konstantinos E, Vrahatis Michael N. Particle swarm optimization method for constrained optimization problems[J]. Intelligent Technologies-Theory and Applications, 2002. 被引量:1
  • 7Wang S J. Short term generation schedu transmission and environmental constraints augmented lagrangian relaxation[J]. IEEE Power Systems, 1995, 10(3): 1294-1301. ling with using an Trans onPower Systems, 1995, 10(3): 1294-1301. 被引量:1
  • 8Kennedy J, Eberhart R. Particle swarms optimization [ C]. Proc IEEE Int Conf on Neural Net Works. Perth, 1995:1942 1948. 被引量:1
  • 9Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer [C]. Proceedings of the IEEE International Swarm Intelligence Symposium, 2005: 124-128. 被引量:1
  • 10Cao P B, Xiao R B, Assembly planning using a novelimmune approach [J ]. International Journal of Advanced Manufacturing Technology, 2007, 31 (7): 770-779. 被引量:1

引证文献3

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部