期刊文献+

一种求解电力系统稳定边界上不稳定平衡点的方法 被引量:3

A New Method to Compute Unstable Equilibrium Points on the Stability Boundary of Power System
下载PDF
导出
摘要 提出一种基于伴随系统和变号系统的求解电力系统经典模型稳定边界上不稳定平衡点的方法。对于一个非线性自治动力系统,存在一个伴随系统,该伴随系统是一个梯度系统,原始系统的所有平衡点都是伴随系统的渐近稳定平衡点,并且每一平衡点存在解析形式的Lyapunov函数。变号系统能将电力系统经典模型降维系统的稳定平衡点变为I型不稳定平衡点,利用该平衡点的1维不稳定流形,生成一族轨迹,沿轨迹寻找伴随系统Lyapunov函数达到极小值的点,这些点一般位于某平衡点伴随系统的稳定域内。以该点为初值对伴随系统进行积分即可收敛到该平衡点。该方法能快速有效的寻找到稳定边界上的不稳定平衡点。在IEEE-10机39节点系统和IEEE-17机162节点系统上仿真,验证了该方法的有效性。 A new method based on adjoint system and minus system to compute unstable equilibrium points on the stability boundary of power system classical model is proposed. For a nonlinear autonomous dynamic system, there exists an adjoint system, which is a gradient system. All equilibrium points of the original system are stable equilibrium points in the adjoint system. And each has an analytical Lyapunov function. The stable equilibrium point of power system classical model dimension-reduction system is type-I unstable equilibrium point in the minus system. Search along the unstable manifolds to find the minimum points of Lyapunov function. The trajectories of adjoint system from these minimum points generally converge to equilibrium points. The method can find the equilibrium point on the stability boundary fast and efficiently, which is verified on IEEE 39-bus system and IEEE 162-bus system.
出处 《中国电机工程学报》 EI CSCD 北大核心 2007年第16期7-12,共6页 Proceedings of the CSEE
基金 国家重点基础研究专项经费项目(2004CB217904) 国家自然科学基金重点项目(50323002)~~
关键词 电力工程 电力系统 非线性自治动力系统 平衡点 稳定边界 伴随系统 变号系统 electric power engineering power system nonlinear autonomous dynamic system equilibrium point stability boundary adjoint system minus system
  • 相关文献

参考文献15

二级参考文献38

  • 1杜正春,甘德强,刘玉田,夏道止.电力系统在线动态安全评价的一种快速数值积分方法[J].中国电机工程学报,1996,16(1):29-32. 被引量:21
  • 2李颖晖.运用稳定流表变换确定电力系统暂态稳定性[M].西安:西安交通大学,2000.. 被引量:1
  • 3Athay T, Podmore R, Viremani S. A Practical Method for Direct Analysis of Transient Stability[J] .IEEE Trans. on Power Apparatus and Systems,1979, PAS-98(2): 573-584. 被引量:1
  • 4Fouad A A, Stanton S E. Transient Stability of A Mutimachine Power System, Part I and Ⅱ [J] .IEEE Trans. on Power Apparatus and System,1981, PAS-100(7): 3408-3424. 被引量:1
  • 5Prabhakara F S, EI-Abiad A H. A Simplified Determination of Stability Regions for Lyapunov Method[J] . IEEE Trans. on Power Apparatus and System,1975, PAS-94(6): 672-689. 被引量:1
  • 6Ribbens-Pavella M, Murthy P G, Horward J L The Acceleration Approach to Practical Transient Stability Domain Estimation in Power Systems [C]. Proceeding, of the 20^th IEEE Conference on Decision and Control, San Diego, 1981, 16(18): 471-477. 被引量:1
  • 7Chiang H D, Wu F F, Varaiya P P. A 13CU Method for Direct Analysis of Power System Stability [J] .IEEETrans. on Power Systems, 1994, 9(3): 1194-1208. 被引量:1
  • 8Chiang H D, Chia-Chi, Gerry Cauley. Direct Stability Analysis of Electric Power System Using Energy Functions: Theory, Applications, and Perspective[J] . Proceedings of the IEEE, 1995,83(11): 1497-1520. 被引量:1
  • 9Chiang H D, Hirsch M W, Wu F F. Stability Region of Nonlinear Autonomous Dynamical System. [J]IEEE Trans. on Automation and Control, 1988, AC-33(1): 519-524. 被引量:1
  • 10Zaborzsky J, Huang G, Zheng B, Leung T C. On the Phase-portrait of a Class of Large Nonlinear Dynamic Systems such as the Power System [J].IEEE Trans. on Automatic Control, 1988, AC-33(1) : 4-15. 被引量:1

共引文献84

同被引文献53

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部