期刊文献+

贝叶斯统计识别法在录井油气评价中的应用 被引量:1

Application of Bayesian statistical pattern recognition in mud log oil-gas evaluation
下载PDF
导出
摘要 综合录井技术广泛应用于油气勘探活动中,而油气资源评价是勘探活动中最主要的工作之一。针对原有传统油气评价方法的不足,探索用模式识别技术进行统计分析。通过对录井特征参数的选择,采用了窗函数法和近邻法求其特征分布,并以此来构造概率密度分布函数,并应用贝叶斯(Bayes)判别决策方法训练分类的有关参数,确定了基于线性窗函数的贝叶斯方法和基于独立近邻原则的贝叶斯方法。最后分别采用传统图版解释法和统计模式识别法进行了对比分析,使其油气评价的符合率得到上升,为油气评价方法提供了一种新的思路。 Mud log technique has been used widely in oil-gas exploration, and oil-gas resource evaluation is one of most main work of them. Aimed at the shortage of traditional method, pattern recognition technology is explored to make statistical analysis. By choosing mud log feature parameters, a method to get distribution function is presented by using window function and neighborhood, and furthermore constructs probability density function. Bayes classification decision is applied to train related parameter, and two synthesis recognition method are proposed, which are Bayesian method based on liner window function and Bayesian method based on independent neighborhood principle. Finally,real data using both traditional graphical method and statistical pattern recognition method are analysed. The result identifies that the ratio of actually is climbed. It provides a new path for oil-gas evaluation method.
作者 杜红 刘强国
出处 《计算机工程与设计》 CSCD 北大核心 2007年第11期2720-2722,共3页 Computer Engineering and Design
关键词 贝叶斯方法 统计模式识别 录井 油气评价 特征参数 bayesian method statistical pattern recognition mud log oil-gas evaluation feature parameter
  • 相关文献

参考文献11

  • 1张成 王振平 杨春华.泌阳凹陷油气层识别及评价技术[R].南阳油田录井公司,2000.. 被引量:2
  • 2马奎斯德萨.模式识别(原理方法及应用)[M].北京:清华大学出版社,2002. 被引量:1
  • 3孙即祥等编著..现代模式识别[M].长沙:国防科技大学出版社,2002:460.
  • 4杨学瑜.模式识别[M].第2版.北京:清华大学出版社,2001. 被引量:1
  • 5Andrew R Webb.统计模式识别[M].第2版.北京:电子工业出版社,2004. 被引量:1
  • 6杨光正等编著..模式识别[M].合肥:中国科学技术大学出版社,2001:230.
  • 7郭炜强,文军,文贵华.基于贝叶斯模型的专利分类[J].计算机工程与设计,2005,26(8):1986-1987. 被引量:13
  • 8苏宏升,李群湛,郝文斌.基于粗糙集和贝叶斯分类器的变电站故障诊断[J].计算机工程与设计,2006,27(16):3099-3101. 被引量:4
  • 9RichardODuda PeterEHart DavidGStork.模式分类[M].北京:机械工业出版社,2003.134-174. 被引量:15
  • 10何晓群编著..多元统计分析[M].北京:中国人民大学出版社,2004:380.

二级参考文献14

  • 1蒋世忠,杨天奇.基于拓展粗糙集的不完备表的规则挖掘及应用[J].计算机工程与设计,2005,26(7):1767-1769. 被引量:3
  • 2JiaweiHan MichelineKambr.数据挖掘-概念与技术[M].高等教育出版社,2001.. 被引量:11
  • 3Caterina Camus, Riccardo Brancaleon. Intellectual assets management: from patents to knowledge[J]. World Patent Information, 2003,(25):155-159. 被引量:1
  • 4Michele Fattori,Giorgio Pedrazzi,Roberta Turra. Text mining applied to patent mapping: a practical business case[J].World Patent Information, 2003,(25):335-342. 被引量:1
  • 5Martin Meyer,Jan Timm Utecht,Tatiana Goloubev. Free patent information as a resource for policy analysis[J].World Patent Information, 2003,(25):223-231 被引量:1
  • 6Nigam Kamal Mccallum, Andrew Kachites, Thrun, et al. Text classification from Labeled and Unlabeled Documents using EM[J]. Machine Learning, 2000,39(2/3): 103-134. 被引量:1
  • 7Lee Heung-Jae,Ahn Bok-Skin,Park-Yong Moon.A fault diagnosis expert system for distribution substations[J].IEEE Trans on power Delivery,2000,15 (1):92-97. 被引量:1
  • 8Zhang Qi,Han Zhenxiang,Wen Fuchuan.A new approach for fault diagnosis in power systems based on rough set theory[C].Hong Kong:4th International Conference on Advances in Power System Control,Operation and Management,IEEE,1997.596-602. 被引量:1
  • 9Chen Wen-Hui,Liu Chih-Wen,Men-Shen Tsai.On-line fault diagnosis of distribution substations using hybrid cause-effect network and fuzzy rule-based method[J].IEEE Transactions on Power Delivery,2000,15(2):710-717. 被引量:1
  • 10Alves da Silva A P,Insfran A H F,da Sillvera P M,et al.Neural networks for fault location in substations[J].IEEE Transactions on power Delivery,1996,11 (1):234-239. 被引量:1

共引文献30

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部