期刊文献+

混合进制及其在贝叶斯网络结构学习中的应用 被引量:1

Mixed scale and its application in study of Bayesian network structure
下载PDF
导出
摘要 贝叶斯网络因其处理不确定性问题的能力及其良好的因果推理机制已成为因果数据采掘的主要技术,同样,它也是实现分布估计算法的一个重要途径。而应用贝叶斯网络所解决的一些实际问题的知识表示中会用到混合进制数。因此,给出了十进制数与混合进制数之间的相互转化定理及其严密的理论证明,旨在应用定理中简单的公式来代替以往复杂的转化算法。 Because of the ability to solve indeterminate problems and do well in the causal reasoning, Bayesian network has been the primary technique for causal datum mining, and an important way to realize the estimation of distribution algorithms. When applying the Bayesian network technique on practical problems, the mixed scale numerals are used. Theorem about reciprocal transformation be- tween decimal numerals and mixed scale numerals is discussed in detail and the rigorous proof about this theory is given. The aim is that simple formulas in theorem is substituted for the former complicated transformation algorithms.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第3期504-505,523,共3页 Computer Engineering and Design
基金 湖北省自然科学基金项目(2002AB040) 孝感学院青年基金项目(Z2007026)
关键词 混合进制 十进制 贝叶斯网络 结构学习 参数学习 mixed scale decimal system bayesian network structure learning parameter learning
  • 相关文献

参考文献9

  • 1Jensen F V.Bayesian networks and decision graphs[M].New York:Springer,2001. 被引量:1
  • 2Cowell R G,Dawid A P,Lauritzen S L,et al.Probabilistic networks and expert systems[M].New York:Springer,1999. 被引量:1
  • 3刘志强.因果关系,贝叶斯网络与认知图(英文)[J].自动化学报,2001,27(4):552-556. 被引量:37
  • 4Suzuki J.Learing Bayesian belief networks based on the minimum description length principle:Basic properties[J].IEEE Transactions on Fundamentals,1999,E8:2237-2245. 被引量:1
  • 5Larranaga P,Lozano J A.Estimation of distribution algorithms:A new tool for evolutionary computation[M].Boston:Kluwer Academic Publishers,2001.38-42. 被引量:1
  • 6Larranaga P,Etxeberria R,Lozano J A,et al.Combinatorial optimization by learning and simulation of Bayesian networks[C].Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence,2000.343-352. 被引量:1
  • 7Pan H P,Liu L.Fuzzy Bayesian networks-A general formalism for representation,inference and learning with hybrid Bayesian networks[J].International Journal of Pattern Recognition and Artificial Intelligence,2000,14(7):941-962. 被引量:1
  • 8Neil M,Fenton N,Forey S,et al.Using Bayesian belief networks to predict the reliability of military vehicles[J].Computing and Control Engineering Journal,2001,12(1):11-20. 被引量:1
  • 9郭炜强,文军,文贵华.基于贝叶斯模型的专利分类[J].计算机工程与设计,2005,26(8):1986-1987. 被引量:13

二级参考文献11

  • 1JiaweiHan MichelineKambr.数据挖掘-概念与技术[M].高等教育出版社,2001.. 被引量:11
  • 2Miao Y,IEEE Trans Fuzzy Systems,2000年,8卷,1期,107页 被引量:1
  • 3Liu Z Q,IEEE Trans Fuzzy Systems,1999年,7卷,5期,495页 被引量:1
  • 4Satur R,IEEE Trans Fuzzy Systems,1999年,7卷,5期,481页 被引量:1
  • 5Liu Z Q,Proc IEEE Int Conf Fuzzy Systems Seoul Korea,1999年,3卷,1540页 被引量:1
  • 6Satur R,J Intelligent Systems,1996年,11卷,9期,671页 被引量:1
  • 7Caterina Camus, Riccardo Brancaleon. Intellectual assets management: from patents to knowledge[J]. World Patent Information, 2003,(25):155-159. 被引量:1
  • 8Michele Fattori,Giorgio Pedrazzi,Roberta Turra. Text mining applied to patent mapping: a practical business case[J].World Patent Information, 2003,(25):335-342. 被引量:1
  • 9Martin Meyer,Jan Timm Utecht,Tatiana Goloubev. Free patent information as a resource for policy analysis[J].World Patent Information, 2003,(25):223-231 被引量:1
  • 10Nigam Kamal Mccallum, Andrew Kachites, Thrun, et al. Text classification from Labeled and Unlabeled Documents using EM[J]. Machine Learning, 2000,39(2/3): 103-134. 被引量:1

共引文献48

同被引文献13

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部