期刊文献+

Bézier曲线的实现和折线求交算法 被引量:1

Drawing of Bézier Curves and Algorithm for Intersection of Broken Lines
下载PDF
导出
摘要 通常Bézier曲线求交研究侧重理论分析,所求出的交点一般不在已绘制的曲线上,不易用来对实际绘出的曲线作精确编辑,剪切时经常会出现空隙或毛头.提出一种与绘制Bézier曲线方法相吻合的Bézier曲线求交算法,称为Bézier折线求交法.所求出的交点可以用来对已绘制的Bézier曲线作精确编辑.该算法稳定、准确、快速. Generally, the theory analysis is thought highly in researcn of intersection of Bézier curves.The intersection point from the theory analysis, generally not on the drawn curve, can't be used for trimming the drawn curve exactly, and the resulting trimmed curve may exhibit "gaps" and "overlaps" at their common point. A intersection algorithm of Bézier curves is presented which agrees with the way of drawing the curves, called intersection algorithm of Bézier broken lines. The intersection point from the algorithm can be used for compiling the drawn Bézier curves exactly. This algorithm is stable, accurate and rapid.
作者 罗敏雪
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期48-51,共4页 Journal of Donghua University(Natural Science)
关键词 BÉZIER曲线 求交 图形编辑 裁剪 Bézier curve intersection graph compiling trim
  • 相关文献

参考文献7

  • 1CHEN Fa-lai, LOU Wen-ping. Degree Reduction of Interval Bézier Curves [ J ]. Computer-Aided Design, 2000, 32: 571 - 582. 被引量:1
  • 2CHEN Fa-lai, YANG Wu. Degree Reduction of Disk Bézier Curves [J]. Computer Aided Geometric Design, 2004, 21: 263- 280. 被引量:1
  • 3魏永伟,汪国昭,杨勤民.区间Bézier曲线和曲面的升阶[J].高校应用数学学报(A辑),2004,19(2):215-224. 被引量:1
  • 4朱心雄.自由曲线曲面造型技术[J].北京.科学出版社,2001:332—347. 被引量:1
  • 5RIDA T Farouki, CHANG Yong-han, JOEL Hass, et al. Topologically Consistent Trimmed Surface Approximation Based on Triangular Patches[J]. Computer Aided Geometric Design, 2004,21 : 459 - 487. 被引量:1
  • 6VICTOR A Debelov, ALEKSANDR M Matsokin. Implementation of Set Operations and Intersection of Bézier Curves[J]. Computers & Graphics, 2000,24: 53-65. 被引量:1
  • 7DINESH Manocha, SHANKAR Krishnan. Algebraic Pruning: a Fast Technique for Curve and Surface Intersection[J]. Computer Aided Geometric Design, 1997, 14:823 - 845. 被引量:1

二级参考文献8

  • 1Hu C Y,Maekawa T,Sherbrooke E C,et al. Robust interval algorithm for curve intersections[J].Computer Aided Design, 1996,28(6-7): 495-506. 被引量:1
  • 2Hu C Y,Patrikalakis N M,Ye X Z. Robust interval solid modeling-Part I :Representations[J].Computer Aided Design, 1996,28 (10): 807-817. 被引量:1
  • 3Hu C Y,Patrikalakis N M,Ye X Z. Robust interval solid modeling-Part Ⅱ:Boundary evaluation [J]. Computer Aided Design,1996,28(10):819-830. 被引量:1
  • 4Sederberg T W,Farouki R T. Approximation by interval Bezier curves[J]. IEEE Computer Graph Appl. ,1992,15(2) :87-95. 被引量:1
  • 5Farin G. Curves and Surfaces for Computer Aided Geometric Design,A Practical Guide[M].3rd Edition. Academic Press, 1993. 被引量:1
  • 6Moore R E. Interval Analysis[M]. Prentice-Hall,New Jersey:Englewood Cliffs, 1966. 被引量:1
  • 7Farin G. Triangular Bernstein-Bezier patches [J]. Computer Aided Geometric Design. 1986,3(8):773-788. 被引量:1
  • 8Chen Falai,Lou,Wenping. Degree reduction of interval Bezier curves[J]. Computer Aided Design.2000,32 (10): 571-582. 被引量:1

同被引文献9

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部