期刊文献+

关于相对对称度量和1-度量的研究 被引量:1

On relative symmetrizability and 1—metric
下载PDF
导出
摘要 本文主要对相对对称度量和1-度量给与了研究,得出以下结果:(1)若Y在X中对称度量化,且Y在X中是Lindel(?)f的,则Y的离散且在X中闭的子空间的基树是可数的。(2)若Y在X中对称度量化且Y的每个离散子空间的基数是可数的,则Y在X中的Souslin数是可数的。(3)如果Y在正则空间X中严格1-度量化,则X在Y上是正规的。 In this paper, we study some properties of relative symmetrizability and 1-metric and show that the following results: (1). If Y is symmetrizable in X and Y is Lindelf in X, then the cardinality of every closed in X discrete subspace of Y is countable. of every discrete subspace of Y is countable, then the (2). If Y is symmetrizable in X and the cardinality Souslin number of Y in X is countable. (3). If Y is strictly 1-metrizable in a regular space X, then X is normal on Y.
作者 张国芳
出处 《吉林师范大学学报(自然科学版)》 2007年第1期1-3,共3页 Journal of Jilin Normal University:Natural Science Edition
基金 国家自然科学基金项目:(10571081)
关键词 Y在X中对称度量化 Y在X中1-度量化 Y在X中严格1-度量化 symmetrizability Y of in X 1--metrizability of Y in X strict 1--metrizability of Y in X.
  • 相关文献

参考文献15

  • 1Engelking R..General Topology[M],1977. 被引量:1
  • 2Arhangel'skii A.V,From classic topological invariant to relative topological properties[J].Scientiae mathematicae japonicae,55,2002,(1),153~201. 被引量:1
  • 3Arhangel'skii A.V and Gordienko I.Ju.Relative symmetizability and metrizability[J],Comment.Math.Univ.Carol.1996,37(4):757 ~774. 被引量:1
  • 4Guo-Fang Zhang and Wei-Xue Shi,Characterizations of Relative Paracompactness by Relative Normality of Product Spaces[J].Houston Journal of Mathematics(accepted). 被引量:1
  • 5Arhangel'skii A.V..Relative topological properties and relative topological spaces[J].Topology and Appl,1996,70:87~99. 被引量:1
  • 6Arhangel'skii A.V.And Genedi H.M.M..Beginning of the Theory of Relative Topological Properties,General Topology[J].Space and Mapping.MGU,Moscow,1989.3~48(in Russian). 被引量:1
  • 7Arhangel'skii A.V.And Yaschenko I.V..Relative compact spaces and separation properties,Comment[J].Math.Univ.Carolinae,1996,37(2),343~348. 被引量:1
  • 8Arhangel'skii A.V.and Gordienko L Ju,On relative normality and relative symmetrizability[J].Moscow Univ.Math.Bull.1995.50(3). 被引量:1
  • 9Grabner E.M..Grabnor G.C.,Miyazaki K.,On properties of realative metacompactness and paracmpactness typ[J].Topology Proc.,2000,25,145~177. 被引量:1
  • 10Grabner E.M.,Grabnor G.C..Miyazaki K.And Tartir J.,Relative collectionwise normality[J],appl.Gen.Topol.,2004,5(2).199~212. 被引量:1

同被引文献10

  • 1Ryszard Engelking. General Topology[ M ]. Revised and completed edition. Berlin: Heldermann, 1989. 被引量:1
  • 2Vladimir Pavlovi-. Some types of relative paracompactness [ J]. Math. Morav. ,2003,7:33 - 42. 被引量:1
  • 3Elise Grabner, Gary Grabner, Kazumi, et al. Relationships among properties of relative paracompactness type [ J ]. Topology proceedincs, 2000,11 145 - 177. 被引量:1
  • 4E lise Graber, Gary. Relationships among properties of paracompactness type [ J ]. Q and A in topology ,2004,22 (2) :91 - 104. 被引量:1
  • 5Yan-Kui Song, G-f Han and Pi-Yu Li. On Relative Star-Lindeltifness, Bull [ J ]. Malays. Math. Sci. Soc. 2006,29 ( 1 ) : 183-186. 被引量:1
  • 6Yan-Kui Song, Relatively absolutely countably compact spaces [J ]. Bull. Malays. Math. Sci. Soc. , 2006,29 ( 1 ) : 17 - 21. 被引量:1
  • 7Guo-Fang Zhang. Some Properties of Relatively Strong Pseudocompactness [ J ]. Czechoslovak Mathematical Journal ,2008,58 (4) :! 145 N 1152. 被引量:1
  • 8张国芳.相对可数紧的一些性质(英文)[J].吉林师范大学学报(自然科学版),2009,30(3):58-60. 被引量:2
  • 9张国芳,邹春玲.具有某种性质的相对可数紧空间[J].吉林师范大学学报(自然科学版),2011,32(3):34-35. 被引量:1
  • 10张国芳,范钦杰.相对次亚紧的一些性质[J].广西师范大学学报(自然科学版),2011,29(4):84-87. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部