期刊文献+

L^2(R,H;dx)上以复值内积定义的连续小波变换(英文) 被引量:1

Continuous wavelet transform on the space L^2 (R,H; dx) by defining complex valued inner product
下载PDF
导出
摘要 L2(R,H;dx)表示所有平方可积的四元数函数空间.通过定义四元数集合的复值内积,将空间L2(R,H;dx)分解为不可约不变子空间的直和,给出容许条件的特征.此外,建立了空间L2(R,H;dx)上的连续小波变换的Parseval等式.最后给出了小波变换的反方程. Let L^2 ( R, H ; dx) be the space of all square integrable quaternion valued functions. By using complex valued inner product on H, we decompose L^2 ( R, H ; dx) into the direct sum of the irreducible invariant subspaces, and give the characterization of the admissible condition. Moreover, we show the Parseval formula of continuous wavelet transform on L^2 ( R, H; dx ). Finally, we get the inverse wavelet transform.
作者 李亚峰
出处 《广州大学学报(自然科学版)》 CAS 2007年第2期10-13,共4页 Journal of Guangzhou University:Natural Science Edition
关键词 四元数 复值内积 连续小波变换 容许条件 quaternion complex valued inner product continuous wavelet transform admissiblecondition
  • 相关文献

参考文献8

  • 1Bulow T, Sommer G. Hypercomplex signal-a novel extension of the analytic signal to the multidimensional case [ J]. IEEE Transaction on signal processing, 2001 (49) :2 844-2 852. 被引量:1
  • 2Felsbery M, Sommer G. The monogenic signal [ J]. IEEE Transaction on Signal Processing, 2001 (49) :3 136-3 144. 被引量:1
  • 3Johnson N W, Weiss A I. Quaternionic modular groups [J]. Linear Algebra and its Appl, 1999(295) :159-189. 被引量:1
  • 4Pfaff F R. A Commutative multiplication of number triplets [ J]. Amer Math Monthly, 2000(107) :156-162. 被引量:1
  • 5Sudbery A. Quaternionic analysis [ J ]. Math Proc Phil Soc, 1979 (85) : 199-225. 被引量:1
  • 6Deavours C A. The quaternion calculus [ J]. Amer Math Monthly, 1973 (80) :995-1008. 被引量:1
  • 7Qian T. Singular integrals on star-shaped lipschitz surfaces in the quaternionic space [ J ]. Math Ann, 1998 ( 310) :601-630. 被引量:1
  • 8Feichtinger H G, Grochenig K H. Banach spaces related to integrable group representations and their atomic decompositions I[J]. J Funct Anal, 1989(86) :307-340. 被引量:1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部