期刊文献+

基于鲁棒LS-SVM的ARMA时序模型研究 被引量:3

Research of ARMA Time Series Model Based on Robust LS-SVM
下载PDF
导出
摘要 对时序数据建模与辨识技术进行了分析,提出了使用鲁棒LS-SVM算法建立ARMA时序预测模型。该模型是在LS-SVM的约束条件中加入鲁棒特性和时序模型参数,使之在求解的过程中对孤立点与噪声不敏感,并且能准确地辨识时序模型参数。考虑到高炉的热状态的输入输出数据集间存在着复杂非线性时序上的关系,通过用基于鲁棒LS-SVM的ARMA模型预报铁水中硅的含量,从而达到了预测高炉热状态的目的。说明了该模型在对非线性时间序列预测精度和稳定性上具有明显的优越性,为稳定钢铁质量和生产工艺创造了良好条件。 Time series modeling and identification techniques were analyzed and the ARMA time series model based on robust LS-SVM algorithm was proposed. In the model, the robust character and time series model parameters have been added into constrain condition of LS-SVM, In the process of computation, the model is not sensitive to the outliers and noises and accurately identifies parameters of time series model. Considering the complex nonlinear relationship of time series between the input and output data sets, the ARMA model based on robust LS-SVM was used to predict the content of silicon in molten iron to gain the heat state of blast furnace. Finally, the experiments with practical data prove that the presented model has obvious superiority in the precision and robust of nonlinear time series prediction, Thus it provides the fine condition to improve quality of steel and stabilize manufacturing craftwork.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第8期1780-1784,共5页 Journal of System Simulation
基金 重庆市教委研究项目资助(KJ060614) 重庆市科委自然科学基金计划资助项目(CSTC 2006BB2393) 湖南省机械设备健康维护重点实验室开放基金资助项目(2005KF01)。
关键词 时序模型 鲁棒 最小二乘支持向量机 高炉热状态 time series model robust LS-SVM heat state of blast furnace
  • 相关文献

参考文献13

  • 1杨天钧,徐金梧著..高炉冶炼过程控制模型[M].北京:科学出版社,1995:216.
  • 2秦民生,杨天钧编著..炼铁过程的解析与模拟[M].北京:冶金工业出版社,1991:384.
  • 3Kawasaki Steel.Go-Stop System,Applied to Blast Furnace[J].Ironmaking Proceedings (S0099-6874),1977,326-366. 被引量:1
  • 4Rosenstein Michael T,Cohen Paul R.Concepts from Time Series[C]// the Fifteenth National Conference on Artificial Intelligence.Madison:WI,1998:739-745. 被引量:1
  • 5Das G,Lin K,Mannila H,Renganathan G,Smyth P.Rule discovery from time series[C]// Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining,New York:AAAI Press,1998:16-22. 被引量:1
  • 6Han J,Dong G,Yin Y.Efficient mining of Partial Periodic Patterns in time series databases[C]// In Proc.Int.Conf.Data Engineering.Sydney:IEEE Computer Society,1999:106-115. 被引量:1
  • 7Mannila H,Toivonen H,Verkamo A I.Discovering frequent episodes in sequences[C]// Proc.of First International Conference on Knowledge Discovery and Data Mining.Menlo Park.California,Montreal Quebec Canada:AAAI Press.1995:210-215. 被引量:1
  • 8Suykens J A K,Vandewalle J.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters (S1370-4621),1999,9(3):293-300. 被引量:1
  • 9Boser B E,Guyon IM,Vapnik V N.A training algorithm for optimal margin classifier[C]// Proc.5th ACM Workshop Comput.Learning Theory.Pittsburgh:PA,1992:144-152. 被引量:1
  • 10Guyon I,Matic N,Vapnik V N,et al.Discovering informative patterns and data cleaning[C]// Advances in Knowledge Discovery and Data MiningU.M.Fayyad et al.,Eds.Cambridge,MA:MIT Press,1996:181-203. 被引量:1

同被引文献32

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部