期刊文献+

基于模拟回火退火的DT-MR图像平滑和估计 被引量:1

Smoothing and Estimating DT-MR Images Based on Simulated Tempering Annealing
下载PDF
导出
摘要 在采用高斯-马尔可夫随机场(GMRF)对扩散张量磁共振成像(DT-MRI)的原始图像进行平滑和估计时,要根据Bayes准则对图像灰度进行最大后验(MAP)估计.为了避免陷入局部最小的“陷阱”和减小计算量,MAP估计采用了模拟回火退火方法(STA).通过对未加权图像和不同梯度脉冲下的加权图像(共7幅)同时进行平滑和估计.结果表明,基于STA对图像进行平滑和估计能够大大减少噪声影响,从而在图像信噪比很低的情况下仍能保证张量场完全正定.把本方法的实验结果与传统模拟退火(SA)方法的结果进行比较,表明基于STA的方法能够更加有效地消除噪声影响,减小计算量. To smooth and estimate the raw data of DT-MRI based on Gaussian-Markov random field (GM- RF), maximum a posterior (MAP) estimation was resorted to estimate the parameters according to the Bayes' theorem. To escape the ‘cheat’of the local optimization and alleviate the burden of computing, simulated tempering annealing (STA) was adopted. An experiment was designed to smooth and estimate simultaneously one unweighted and six different gradients weighted images. The results of the experiment verify the utility of the mentioned method by the greatly decreased noise effect and the ensured positive semi-definite characteristics of the tensor field even if the signal-to-noise ratio(SNR) is very low. Compared with the traditional SA method, the method adopted can more efficiently decrease the noise effect and the computing burden.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2007年第4期654-657,共4页 Journal of Shanghai Jiaotong University
基金 国家重点基础研究发展规划(973)资助项目(2003CB716103)
关键词 扩散张量成像 高斯-马尔可夫随机场 平滑 模拟回火退火 最大后验 diffusion tensor imaging (DTI) Gaussian-Markov random field (GMRF) smoothing simulated tempering annealing (STA) maximum a posteriori (MAP)
  • 相关文献

参考文献9

  • 1Lazar M.White matter tractography:An error analysis and human brain tract reconstruction study[D].Salt Lake City:Department of Physics,Univ of Utah,2003. 被引量:1
  • 2McGraw T,Vemuri B C,Chen Y,et al.DT-MRI denoising and neuronal fiber tracking[J].Medical Image Analysis,2004(8):95-111. 被引量:1
  • 3Park H J,Kubicki M,Martha E,et al.Spatial normalization of diffusion tensor MRI using multiple channels[J].Neuro Image,2003(20):1995-2000. 被引量:1
  • 4Marcos M F,Raul S J E,Westin C F,et al.A novel Gauss-Markov random field approach for regularization of diffusion tensor maps[J].Lecture Notes in Computer Science,2003,28(9):506-517. 被引量:1
  • 5Rogers L C G,Williams D.Diffusions,Markov processes and Martingales[M].Beijing:World Publishing Company,2003:5-10. 被引量:1
  • 6康立山,谢云,尤矢勇等.非数值并行算法-模拟退火算法[M].北京:科学出版社,2003. 被引量:9
  • 7周瑛,吴国忠,曾广杰,余飞鸿.用模拟退火算法设计光学有限脉冲响应滤波器[J].光学学报,2003,23(8):1000-1004. 被引量:3
  • 8Li S Z.Markov random field modeling in image analysis[M].Tokyo:Springer,2001:11 -27. 被引量:1
  • 9Westin C F,Maier S E,Mamata H,et al.Processing and visualization for diffusion tensor MRI[J].Medical Image Analysis,2002(6):93-108. 被引量:1

二级参考文献3

共引文献10

同被引文献9

  • 1谈瑁.FPGA互连结构与布局布线算法研究[D].复旦大学,2008. 被引量:2
  • 2Deming Chen, Jason Cong, Peichen Pan. FPGA de- sign automation:a survey[J]. Electronic Design Au- tomation, 2006, 1(3): 195-198. 被引量:1
  • 3Betz V. VPR user's manual [EB/OL]. (2012-01- 19). [-2012 - 09 - 151. http://www, eecg. toronto. edu/iayar/. 被引量:1
  • 4Kirkpatriek S, Gelattand C, Vecchi M. Optimization by simulated annealing [J]. Science, 1983, 220 (4598) : 671 -680. 被引量:1
  • 5I.AM J, Delosme J. Performance of a new annealing schedule[C]//DAC. Anaheim CA, USA, 1988. 被引量:1
  • 6Ebeling C, McMurchie L, Hauch S A. et al. Place and route tools for the Triptych FPGA[C]// IEEE Trans. on VLSI. USA:Princeton,New Jersey,1995. 被引量:1
  • 7祈火林.基于VPR的FPGA布局算法研究与改进[D].武汉:武汉理工大学,2009. 被引量:1
  • 8邓庆绪,韩瑶方,金曦.基于VPR算法的FPGA布局问题的研究[J].计算机工程与科学,2008,30(A1):236-239. 被引量:1
  • 9Cong J, Ding Y. Flow map: an optimal technology mapping algorithm for delay optimization in lookup- table based FI:K;A design [J]. IE'EE Tranctions on Computer- Ai- ded FOesign Systems, 1994, 13(1):1-12. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部