期刊文献+

水溶性CdTe量子点的稳态和纳秒时间分辨光致发光光谱 被引量:3

Steady-state and nanosecond time-resolved photolu minescence spectroscopies of aqueous CdTe quantum dots
原文传递
导出
摘要 报道了以飞秒脉冲激光为激发光源的水溶性CdTe量子点(QDs)的稳态荧光光谱和纳秒时间分辨荧光光谱.实验发现CdTe量子点的荧光光谱峰值位置随激发波长变化发生明显移动,激发脉冲波长越长,荧光峰位红移越大.荧光动力学实验数据显示,在400nm和800nm脉冲激光激发下,水溶性CdTe量子点的荧光光谱中均含有激子态和诱捕态两个衰减成分,两者的发射峰相距很近,诱捕态的发射峰波长较长.在800nm脉冲激光激发下的诱捕态成分占总荧光强度的比重比400nm激发下的约高3倍,其相对强度的这种变化导致了稳态荧光发射峰位的红移. We have used femtosecond laser pulse to investigate the steady-state and nanosecond time-resolved photoluminescence of aqueous CdTe quantum dots (QDs). Up-conversion luminescences of the CdTe QDs induced by two-photon excitation were observed. Compared with 400 nm excitation, the peak wavelength of photoluminescence induced by 1208 nm excitation was redshifted about 28 nm (88 meV). The decay kinetics showed a fast and a slow decay component which can be assigned to bandedge excitonic state (3-5 ns ) and surface trapping state (30-50 ns), respectively. Luminescence and up-conversion luminescence at room temperature showed similar decay kinetics. The relative change of photoluminescence intensity between excitonic and trapping state is responsible for the red shift of emission peak. It was found that the proportion of excitonic emission in whole luminescence at 400 nm excitation is bigger than that of excitonic emission at 800 nm excitation, so with increasing the wavelength of laser excitation steady state spectra have the red shift of emission peaks.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2007年第5期2926-2930,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60478015和10674034)资助的课题~~
关键词 CDTE量子点 时间分辨 荧光光谱 上转换荧光 CdTe quantum dots (QDs), time-resolved, two-photon absorption (TPA), up-conversion photoluminescence (UCL)
  • 相关文献

参考文献15

二级参考文献38

  • 1Yamada M, Anan T, Kurihara K, Nishi K,Tokutome K and Kamei A 2000 Electron. Lett. 36 637. 被引量:1
  • 2Quochi F, Kilper D C, Cunningham J E, Dinu M and Shah J 2001 IEEE Photon. Technol. Lett. 13 921. 被引量:1
  • 3Hatami F, Grundmann M, Ledentsov N N, Heinrichsdorff F, Heitz R, Boehrer J, Bimberg D, Ruvimov S S, Wemer P, Ustinov V M,Kopev P S and Alferov Zh Ⅰ 1998 Phys. Rev. B 57 4635. 被引量:1
  • 4Bennett B B, Magno B and Shanabrook B V 1996 Appl. Phys.Lett. 68 505. 被引量:1
  • 5Müller-Kirsch L, Heitz R, Schliwa R, Stier O, Bimberg D, Kirmse H and Neumann W 2001 Appl. Phys. Lett. 78 1418. 被引量:1
  • 6Van der Walle C G 1989 Phys. Rev. B 39 1871. 被引量:1
  • 7Liu G B, Chuang S L and Park S H 2000 J. Appl. Phys. 88 5554. 被引量:1
  • 8Ji G, Agarwala S, Huang D, Chyi J and Morkoc H 1988 Phys.Rev. B 38 10571. 被引量:1
  • 9Peter M, Winkler K, Maier M, Herres N, Wagner J, Fekete D and Bachem K H 1995 Appl. Phys. Lett. 67 2639. 被引量:1
  • 10Prins A D, Dunstan D J, Lambkin J D, O' Reilly E P, A dams AR, Pritchard R, Truscott W S and Singer K E 1993 Phys. Rev. B47 2191. 被引量:1

共引文献18

同被引文献41

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部