期刊文献+

Structural Feature and Solute Trapping of Rapidly Grown Ni3Sn Intermetallic Compound 被引量:1

Structural Feature and Solute Trapping of Rapidly Grown Ni3Sn Intermetallic Compound
下载PDF
导出
摘要 The rapid dendritic growth of primary Ni3Sn phase in undercooled Ni-30.9%Sn-5%Ge alloy is investigated by using the glass fluxing technique. The dendritic growth velocity of Ni3Sn compound is measured as a function of undercooling, and a velocity of 2.47m/s is achieved at the maximum undercooling of 251 K (0.17TL). The addition of the Ge element reduces its growth velocity as compared with the binary Ni75Sn25 alloy. During rapid solidification, the Ni3Sn compound behaves like a normal solid solution and it displays a morphological transition of "coarse dendrite-equiaxed grain-vermicular structure" with the increase of undereooling. Significant solute trapping of Ge atoms occurs in the whole undercooling range. The rapid dendritic growth of primary Ni3Sn phase in undercooled Ni-30.9%Sn-5%Ge alloy is investigated by using the glass fluxing technique. The dendritic growth velocity of Ni3Sn compound is measured as a function of undercooling, and a velocity of 2.47m/s is achieved at the maximum undercooling of 251 K (0.17TL). The addition of the Ge element reduces its growth velocity as compared with the binary Ni75Sn25 alloy. During rapid solidification, the Ni3Sn compound behaves like a normal solid solution and it displays a morphological transition of "coarse dendrite-equiaxed grain-vermicular structure" with the increase of undereooling. Significant solute trapping of Ge atoms occurs in the whole undercooling range.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2009年第11期231-234,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 50121101 and 50395105
关键词 SURFACES interfaces and thin films Condensed matter: structural mechanical & thermal Surfaces, interfaces and thin films Condensed matter: structural, mechanical & thermal
  • 相关文献

参考文献18

  • 1Dragnevski K, Cochrane R F and Mullis A M 2002 Phys. Rev. Lett. 89 215502. 被引量:1
  • 2Wang W L, Shen C L, Luo B C and Wei B 2009 Phil. Mag. Lett. 89 409. 被引量:1
  • 3Sung Y S, Takeya H, Hirata K and Togano K 2003 Appl. Phys. Lett. 82 3638. 被引量:1
  • 4Han X J, Yao W J and Wei B 2002 Chin. Phys. Lett. 19 584. 被引量:1
  • 5Greet A L and Assadi H 1997 Mater. Sci. Eng. A 226-228 133. 被引量:1
  • 6Gao F, Cheng F Jet al 2008 Mater. Lett. 62 2257. 被引量:1
  • 7Zhang Z H et al 2002 J. Cryst. Growth 243 531. 被引量:1
  • 8Aziz M J 1982 J. Appl. Phys. 53 1158. 被引量:1
  • 9Wang H P, Yao W J and Wei B 2006 Appl. Phys. Lett. 89 201905. 被引量:1
  • 10Conti M and Fermani M 2003 Phys. Rev. E 67 026117. 被引量:1

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部