期刊文献+

正跳的Lévy过程的极值分布与不破产概率关系模型

The model of research for the relations between the extreme distribution for the Lévy processes with positive jumping and the probability of non-bankruptcy
下载PDF
导出
摘要 根据概率统计学和经济学理论,利用风险分析中的破产概率与带正跳的Lévy过程的一类极值分布间的关系,求得该极值分布的表达式,进而建立带正跳的Lévy过程与不破产概率模型,通过计算机仿真模拟,得到的结果较为符合实际. The extreme distribution for the Lévy processes with positive jumping are given by the relations of the extreme distribution and ruin probability. Based on the probability statistics and the economics, the paper seeks the expression of the extreme distribution, and establishes the research model of the relation between the extreme distribution for the Lévy processes with positive jumping and the probability of non - bankruptcy. The simulative results of computer imitating and simulating are quite consistent with fact.
出处 《武汉工程大学学报》 CAS 2007年第2期88-91,共4页 Journal of Wuhan Institute of Technology
关键词 带正跳的Lévy过程 POISSON过程 不破产概率 分布函数 the Lévy processes with positive jumping processes of Poisson probability of non- bankruptcy distribution function
  • 相关文献

参考文献4

  • 1[1]Grandell J.Aspects of Ridk Theory[M].New York:Springer-re,rbag,1991. 被引量:1
  • 2[2]Dwfresne F,Gerber.Risk theory for the Compound Process that is perturbed by diffusion indurance[J|].IEEE Mathematics and Econmics,1991,(10):51-59. 被引量:1
  • 3吴荣,张春生,王过京,等.关于古典风险模型的一个联合分布[J].应用概率统计,2003,2(6):125-129. 被引量:1
  • 4[4]Bowers,Gerber,Hickman,et al.Actuarial Mathematics[M].Society of Actuaries,1991. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部