期刊文献+

股票价格遵循非时齐Poisson跳的亚式期权保险 被引量:2

An Actuarial Approach to Asian Option Pricing in Poisson Jump-Diffusion Model
下载PDF
导出
摘要 如果市场有套利时,传统的期权定价的理论就会出现困难.1998年Mogens Bladt和Tina Hviid Ry-dberg提出保险精算定价方法,在市场不作上述假设的前提下,利用公平保费原理和价格过程的实际概率测度,得到了期权的定价公式.运用这一方法研究了亚式期权的定价问题:在股票价格遵循非时齐Poisson跳,期权浮动敲定价格遵循It^o过程的假设下,获得了亚式看涨看跌期权的定价公式以及平价公式. Without market assumptions, Mogens Bladt and Tina Hviid Rydberg used merely probabilistic measure of price process and actuarial considerations for pricing options in 1998. Under that conditions, in this paper, by using physical probabilistic measure of price process and the principle of fair premium, we dealt with pricing formula of option on Asian option under the assumption that stocks price process was driven by non-homogeneous Poisson jump diffusion process and struck price process driven by Ito process , we obtained the pricing formula of Asian option and put call parity.
出处 《湖北工业大学学报》 2007年第1期97-100,104,共5页 Journal of Hubei University of Technology
关键词 亚式期权 期权定价 保险精算 非时齐Poisson跳过程 Asian option option pricing fair premium non-homogeneous poisson jump diffusion
  • 相关文献

参考文献4

  • 1[1]Bladt M,Rydberg T H.An Actuarial Approach to Option Pricing under the Physical Measure and Without Market Assumptions[J].Insurance:Mathematics and Economics,1998,22(1):65-73. 被引量:1
  • 2闫海峰,刘三阳.带有Poisson跳的股票价格模型的期权定价[J].工程数学学报,2003,20(2):35-40. 被引量:46
  • 3[3]Knut K,Aase.Contingent Claims Valuation when the Security Price is Combination of an Ito Process and a Random Point Process[J].Stochastic Process and Their Applications,1988.28(2):185-220. 被引量:1
  • 4[4]Dravid A,Richardon M,Sun T.Pricing Foreign Index Contingent Claims:An Application to Nikkei Index Warrants[J].The Journal of Derivatives,Fall 1993:55-60. 被引量:1

二级参考文献13

  • 1Blacd F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973;81(3) :637 - 654. 被引量:1
  • 2Lo A W, Mackinlary A C. Stock market prices do not follow random walks: evidence from a simple specification test[ J]. Review of Financial Studies, 1988 ; 1:41 - 66. 被引量:1
  • 3Knut K, AASE. Contingent claims valuation when the security price is combination of an its process and a random point process[J]. Stochastic processes and their Applications, 1988 ;28(2) :185 -220. 被引量:1
  • 4Merton M C. Continuous-Time finance[ M]. Cambridge M A: Blackwell Publishers, 1990. 被引量:1
  • 5Martin Schweizer. Option heading for semi-martingales[J]. Stochastic Processes and Their Application, 1991 ;37(3) :339 - 360. 被引量:1
  • 6Chan T. Pricing contingent claims on stocks driven by Levy processes[ J ]. Annals of Appl Prob, 1999;9 (2) :504- 528. 被引量:1
  • 7Kallsen Jan. Optimal portfolios for exponential Levy processes [ J ]. Math Meth Oper Res, 2000 ; 51 (3) : 357 - 374. 被引量:1
  • 8Jean Luc Prigent. Option pricing with a general marked point process[J]. Mathematics of Operations Research,2001 ;26(1) :50 - 66. 被引量:1
  • 9Bladt M, Rydberg T H. An actuartial approach to option pricing under the physical measure and without market assumptions[ J]. Insurance: Mathematics and Economics, 1998 ;22 ( 1 ) :65 - 73. 被引量:1
  • 10Cox J C, Roos S A, Rubinstein M. Option pricing: a simplified approach[J]. Journal of Economics,1979;7(3) :229 - 263. 被引量:1

共引文献45

同被引文献13

  • 1韩响楠,何春雄.带跳市场中亚式期权的价格下界[J].系统工程学报,2010,25(3):354-358. 被引量:5
  • 2张敏,李昶,何穗.几何分形Brown运动的外汇期权定价[J].湖北工业大学学报,2006,21(6):75-77. 被引量:4
  • 3Hull J C.期权,期货和其他衍生产品[M].北京:华夏出版社,2003. 被引量:2
  • 4Bladt M, Rydberg T H. An actuarial approach to option pricing under the physical measure and without market assumptions [ J ]. Insurance: Mathematics and Econom- ics, 1998,22( 1 ) :65-73. 被引量:1
  • 5Black F, Scholes M. The pricing of options and corporate liabilities [ J ]. Journal of political Economy, 1973 (81 ) : 637-659. 被引量:1
  • 6Knut K A. Contingent claims valuation when the security price is combination of an Ito process and a random point process [ J ]. Stochastic process and their applications, 1988,28 (2):185-220. 被引量:1
  • 7Bayraktar E, Xing H. Pricing Asian option for jump dif- fusion [ J ]. Mathematical Finance, 2011, 21 ( 1 ) : 117-143. 被引量:1
  • 8Yun Jaeho.The Role of Time-varying Jump Risk Premia in Pricing Stock Index Options[J].Journal of Empirical Finance,2011,18(6):833-846. 被引量:1
  • 9In Joon Kim,Sol Kim.Empirical Comparison of Alternative Stochastic Volatility Option Pricing Models:Evidence from Korean KOSPI200 Index Options Market[J].Pacific-Basin Finance Journal,2003,12(6):117-142. 被引量:1
  • 10MUSIELA M,RUTKOWSKI M.Martingale Methods in Financial Modeling[M].Berlin Heidelberg:Springer Verlag,1997. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部