期刊文献+

改进的基于转换方法的拉丁蒙文词性标注 被引量:4

Improved transformation based part of speech tagging of Latin Mongolian
下载PDF
导出
摘要 针对传统基于转换的词性标注方法中规则学习速度过慢的问题提出了一种对训练语料库进行动态划分的算法。该算法根据规则之间的冲突和依赖关系对训练语料库进行动态划分,减小了搜索空间。在保证拉丁蒙文词性标注正确率的前提下提高了规则学习速度。经过10000拉丁蒙文句子语料库的对比测试,发现该方法在规则学习中所花费的时间仅为原方法的32%。 To solve the problem of rule learning time cost for traditional transformation based part of speech tagging method of Latin Mongolian, a dynamic partition algorithm was presented. It used rule conflict and rule dependency to dynamically partition the training corpus, reduced the searching space and increased the rule learning speed. In an open test of a Latin Mongolian corpus with 10000 sentences, the time that new algorithm cost was only 32% of the old one.
出处 《计算机应用》 CSCD 北大核心 2007年第4期963-965,共3页 journal of Computer Applications
基金 中国科学院知识创新工程重要方向项目资助(KGCX2-SW-511)
关键词 词性标注 转换 规则冲突 规则依赖 动态划分 part of speech tagging transformation rule conflict rule dependency dynamic partition
  • 相关文献

参考文献4

二级参考文献4

共引文献9

同被引文献34

  • 1赵斯琴.蒙古语词性标注系统的设计[J].内蒙古师范大学学报(自然科学汉文版),2006,35(2):186-188. 被引量:1
  • 2王斯日古楞.蒙古语单词词性自动识别研究[J].内蒙古师范大学学报(自然科学汉文版),2007,36(3):319-321. 被引量:2
  • 3图格木乐.蒙古文资源库相关技术研究[D].呼和浩特:内蒙古大学蒙古学学院,2007. 被引量:1
  • 4宗成庆.统计自然语言处理[M].北京:清华大学出版社,2011. 被引量:6
  • 5Brill E.Transformation based error driven learning and natural language processing:a case study in part of speech tagging[J].Computational Linguistics,1995,21(4):543-565. 被引量:1
  • 6Brants T.TnT:a statistical part of speech tagger[C]//Proceedings of the 6th Conference on Applied Natural Language Processing.Stroudsburg,Association for Computational Linguistics,2000:224-231. 被引量:1
  • 7Gimenez J,Marquez I.Fast and accurate part of speech tagging:The SVM approach[C]//Proceedings of the 4th International Conference on Recent Advances in Natural Language Processing.2003:158-165. 被引量:1
  • 8Ratnaparkhi A.A maximum entropy model of part of speech tagging[C]//Proceedings of EMNLP.Computational Linguistics,Cambridge,MIT Press,1996:133-141. 被引量:1
  • 9Andrew McCallum,Dayne Freitag,Fernando Pereira.Maximum entropy markov models for information extraction and segmentation[C]//Proceedings of ICML.San Francisco,Morgan Kaufmann Publishers,2000:591-598. 被引量:1
  • 10Yoshimasa Tsuruoka,Yusuke Miyao,Jun'ichi Kazama.Learning with Lookahead:Can History-Base Models Rival Globally Optimized Models?[C]//Proceedings of the 15th Conference on Computational Natural Language Learning.Stroudsburg,Association for Computational Linguistics,2011:238-246. 被引量:1

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部