期刊文献+

基于实例和错误驱动的规则学习方法及其应用 被引量:1

A RULE LEARNING METHOD BASED ON THE INSTANCE AND ERROR-DRIVING AND ITS APPLICATION
下载PDF
导出
摘要 提出了一种基于实例和错误驱动相结合的规则学习方法。该方法首先将提取的文本中的语法结构信息作为实例,然后采用基于转换的错误驱动学习方法找出这些实例的适用上下文环境,从而建立相应的规则库。此方法提取出的规则完全采用机器学习的方式,避免了人工提取规则的主观性缺点。可用于诸如词性标注、未登录词识别、命名实体抽取等自然语言研究课题。 A new rule learning method based on the instance and error-driving is proposed. Grammar structure information is extracted and taken as the instance,and then the context of the instance is found according to the error-driving learning method. Thus,a rule-base is constructed. The model of machine learning is adopted ,and the subjectivity default caused by manual work is avoided. The method could be used in many natural language research subjects, such as unknown word recognition ,part of speech tagging and name entity extraction ,etc.
出处 《计算机应用与软件》 CSCD 北大核心 2008年第1期162-164,共3页 Computer Applications and Software
关键词 规则学习 中文信息处理 专有名词识别 Rule learning Chinese information processing Proper noun recognition
  • 相关文献

参考文献6

二级参考文献33

  • 1周强.一个汉语短语自动界定模型[J].软件学报,1996,7(A00):315-322. 被引量:9
  • 2Abney, 1996b. Partial parsing via finite-state cascades. In Proceedings of the ESSLLI '96 Robust Parsing Workshop. 被引量:1
  • 3Argamon, S., I. Dagon and Y. Krymolowsky. 1998. A memory-based approach to learning shallow natural language patterns. In Proceedings of COLING-ACL '98. Pp. 67-73. 被引量:1
  • 4Brill, Eric. 1995. Unsupervised learning of Disambiguation Rules for part of speech tagging. In Proceedings of the 3rd Workshop on Very Large Corpora. Pp. 1-13. 被引量:1
  • 5Cardie, Claire and David Pierce. 1998. Error-driven pruning of treebank grammars for base noun phrase identification. In Proceedings of COLING-ACL '98. Pp. 218-224. 被引量:1
  • 6Chen, Kuang-hua and Chen, Hsin-Hsi. 1994. Extracting noun phrases from large-scale texts: a hybrid approach and its automatic evaluation. In Proceedings of the 32nd Annual Meeting of the Association for Computational binguistics. Pp. 234-241. 被引量:1
  • 7Chen, Hsin-Hsi and Lee, Yue-Shi. 1995. Development of a partially bracketed corpus with part-of- speech information only. In Proceedings of the 3rd Workshop on Very Large Corpora. Pp. 162-172. 被引量:1
  • 8Church, K. 1988. A stochastic parts program and noun phrase parser for unrestricted text. In Proceedings of the Second Conference on Applied Natural Language Processing. Pp. 136-143. 被引量:1
  • 9Collins, M. 1996. A new statistical parser based on bigram lexical dependencies. In Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics. Pp. 184-191. 被引量:1
  • 10Fano, R. M. 1961. Transmission of lnformation, A Statistical Theory of Communication. MIT Press. 被引量:1

共引文献47

同被引文献8

  • 1Daniel Jurafsky,James H.Martin.自然语言处理综述[M].冯志伟,孙乐译.北京:电子工业出版社,2005. 被引量:1
  • 2Lafferty J,McCallum A,Pereira F.Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence Data[C].In:Proceedings of the 18th International Conf on Machine Learning.San Francisco:AAAI Press,2001:282-289. 被引量:1
  • 3Sutton C,MeCallum A.An Introduction to Conditional Random Fields for Relational Learning[A]//se Getoor and Ben Taskar.Introduction to Statistical Relational Learning[M].Maryland,MIT Press,2006. 被引量:1
  • 4Hanna Wallach.Efficient Training of Conditional Random Fields[C].In:Proc.6th Annual CLUK Research Colloquium,2002. 被引量:1
  • 5Florian R,Ngai G.Fast Transformation-based Learning Toolkit[EB/OL].[2008-09-10].http://p.cs.jhu.edu/~ rflorian/fntbl/documentation.html. 被引量:1
  • 6Brill.Transformation-based Error-driven Learning and Natural Language Processing:A Case Study in part of Speech Tagging[J],Computational Linguistics,1995 (21):543-565. 被引量:1
  • 7肖忠华.兰开斯特汉语语料库[EB/OL].[2008-11-05].http://ling.cass.cn/dangdai/LCMC/LCMC.htm. 被引量:1
  • 8李鑫,黄萱菁,吴立德.基于错误驱动算法组合分类器及其在问题分类中的应用[J].计算机研究与发展,2008,45(3):535-541. 被引量:19

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部