期刊文献+

基于小生境的开放式遗传算法 被引量:4

Open genetic algorithms based on NICHE
下载PDF
导出
摘要 针对现有遗传算法处理带约束优化问题时存在的缺点,基于小生境技术提出一种新的开放式遗传算法,证明它一定能收敛到全局最优解。该算法避免罚因子的选择问题,具有很强的通用性,对问题本身和约束基本没有要求,实施起来十分方便,可以充分发挥GA的优势。通过两个小生境相互作用机制,使GA群体搜索的特点得到很好的利用,保证群体的多样性,加速搜索速度。仿真实例说明了它的有效性。 Taking biosphere and adaptive mathematic models into account, a new Open Genetic Algorithm (OGA) based on NICHE was proposed, which overcome the defects of current genetic algorithm in solving constrained optimization problems. The convergence of global optimal solution of OGA was verified. Firstly, OGA does not need to confirm penalty coefficient, so it is strongly adaptable; secondly, OGA almost does not request the problems and the constraint, so it is easy to apply, which shows the advantage of GA; finally, in order to make good use of the population search characteristics of GA, ensure the diversity of population, and accelerate the search speed, OGA adopted the interaction mechanism between two NICHEs. Experiments show the algorithm is effective.
出处 《计算机应用》 CSCD 北大核心 2007年第4期960-962,965,共4页 journal of Computer Applications
关键词 开放式遗传算法 约束优化问题 小生境 open genetic algorithm constrained optimization problem NICHE
  • 相关文献

参考文献12

二级参考文献59

  • 1王国夫,王鷁,孙尧,王景敏.混合GA与SA求解非线性约束优化[J].哈尔滨工程大学学报,2002,23(6):73-76. 被引量:10
  • 2Y.H. Song, University of Bath, UKF. li . R. Morgan , John Moores University, Liverpool, UKD. T. Y Cheng, National Grid Cornpany , UK.电力系统经济调度中遗传算法的比较研究[J].电网技术,1995,19(3):28-33. 被引量:4
  • 3孟庆春,贾培发.关于Genetic算法的研究及应用现状[J].清华大学学报(自然科学版),1995,35(5):44-48. 被引量:21
  • 4[1]Himmelblau, D.M. Applied Nonlinear Programming. New York: McGraw-Hill, Inc., 1972. 被引量:1
  • 5[2]Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Readings, MA: Addison-Wesley Publishing Company, 1989. 被引量:1
  • 6[3]Michalewicz, Z., Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation Journal, 1996,4(1):1~32. 被引量:1
  • 7[4]Powell, D., Skolnick, M. Using genetic algorithms in engineering design optimization with nonlinear constraints. In: Forest, S., ed. Proceedings of the 5th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1993. 424~430. 被引量:1
  • 8[5]Deb, K., Agrawal, S. A niched-penalty approach for constraint handling in genetic algorithms. In: Montana, D., ed. Proceedings of the ICANNGA-99. Portoroz, Slovenia, 1999. 234~239. 被引量:1
  • 9[6]Schoenauer, M., Michalewicz, Z. Boundary operators for constrained optimization problems. In: Baeck, T., ed. Proceedings of the 7th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1997. 322~329. 被引量:1
  • 10[7]Michalewicz, Z., Nazhiyath, G., Michalewicz, M. A note on usefulness of geometrical crossover for numerical optimization problems. In: Angeline, P., Baeck, T., eds. Proceedings of the 5th Annual Conference on Evolutionary Programming. Cambridge, MA: MIT Press, 1996. 325~331. 被引量:1

共引文献174

同被引文献42

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部