期刊文献+

一种基于进化算法的连续属性离散化方法 被引量:7

A QUANTIZATION OF REAL-VALUE ATTRIBUTES BASED ON EVOLUTION ALGORITHM
下载PDF
导出
摘要 连续属性离散化是知识系统中的一个重要环节 ,一个好的离散化方法能够起到简化知识的描述和便于对知识系统的处理。而求取连续属性值的最优断点集合是一个NP难题 ,本文把连续属性值离散化问题作为一种约束优化问题 ,采用遗传算法来获得最优解 ,并针对离散化问题设计了相应的编码方式、交叉算子和变异算子。实验结果表明 。 The quantization of real-value attributes is an important process in the knowledge system.A good quantization can reduce the representation of knowledge and make easy to discovery knowledge.The optimal partition problem is a NP-hard.The quantization of real-value attributes is a constrained optimization and a new quantization based on evolution algorithm is proposed in this paper.To quantization this paper designs a code method,a specific crossover and mutation.The result of experiment indicates that the quantization based on evolution algorithm is efficient.
出处 《计算机应用与软件》 CSCD 北大核心 2005年第3期37-39,85,共4页 Computer Applications and Software
基金 江苏省自然科学基金的资助(DK2 0 0 2 0 81 )
关键词 数据库 数据挖掘 知识发现 进化算法 连续属性离散化方法 Quantization Code Crossover Mutation Fitness
  • 相关文献

参考文献6

  • 1王国胤..ROUGH集理论与知识获取[M],2001.
  • 2余文,李人厚.遗传算法对约束优化问题的研究综述[J].计算机科学,2002,29(6):98-101. 被引量:20
  • 3Nguyen,H.S.Skowron,A.Quantization of Real-valued Attributes,Rough Set and Boolean Reasoning Approaches.In:Proc.of the second Joint Annual Conference on Information Sciences,Wrightsville Beach,North Carolina,September 28-October 1 1995,USA pp.34~37. 被引量:1
  • 4Nguyen,H.S.Nguyen,S.H.Skowron,A.Searching for Features defined by Hyperplanes.In:Z.W.Ra,M.Michalewicz(eds.),Pro.Of the IX International Symposium on Methodologies for Information Systems ISMIS'96.June 1996,Zakopane,Poland.Lecture Notes in AI 1079,Berlin,Springer Verlag,pp.366~375. 被引量:1
  • 5HUAN LIU.FARHAD HUSSAIN.CHEW LIM TAN.MANORANJAN DASH.Discretization:An Enabling Technique.Data Mining and Knowledge Discovery.2002,6,393~423. 被引量:1
  • 6Nguyen Sinh Hoa,Nguyen Hung Son.Some Efficient Algorithms for Rough Set Methods.http:∥citeseer.nj.nec.com/nguyen96some.html. 被引量:1

二级参考文献21

  • 1Gen M, Cheng Runwei. Genetic algorithms and engineering design. New York: Wiley-Interscience, 2000 被引量:1
  • 2Gen M,Cheng Runwei. Genetic algorithms and engineering optimization. New York: Wiley-Interscience, 2000 被引量:1
  • 3Herrera F,Verdegay J L. Genetic algorithms and soft computing.Heidelberg Physica-Verlag, 1996 被引量:1
  • 4Man K F,Tang K S,Man S K. Genetic algorithms: concepts and designs London; New York: Springer, 1999 被引量:1
  • 5Michalewicz Z,Dasgupta D,et al. Evolutionary algorithms for industrial engineering problems. International Journal of Computers & Industrial Engineering, 1996,30 (4) 被引量:1
  • 6Glover F, Greenberg H. New approaches for heuristic search: A bilateral linkage with artificial intelligence. European Journal of Operational Research, 1989,39:119~ 130 被引量:1
  • 7Tanese R. distributed genetic algorithms for function optimization: [Ph. D. Thesis ]. University of Michigan , Ann Arbor, MI,1989 被引量:1
  • 8Michalewicz Z. Genetic Algorithm+Data Structure= Evolution Programs. Springer-Verlag, New York ,1994 被引量:1
  • 9Davis L. Handbook of genetic algorithms, New York, Van Nostrand Reinhold, 1991 被引量:1
  • 10Michalewicz Z, Atria N. Evolutionary algorithms for constrained engineering problems. In: Proc. of the third annual conf. on Evolutionary Programming, 1994.98~ 108 被引量:1

共引文献19

同被引文献54

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部