期刊文献+

基于小波域高斯混合模型与中值滤波的图像去噪研究 被引量:1

下载PDF
导出
摘要 分析了基于高斯混合模型的小波去噪方法,并结合中值滤波提出一种新的图像去噪方法。仿真实验表明,将两种方法结合起来用于含混合噪声的图像去噪,比单独使用中值滤波或小波去噪的效果更好。
出处 《电子技术应用》 北大核心 2007年第5期61-63,共3页 Application of Electronic Technique
基金 湖南省自然科学基金项目(06JJ50117) 湖南省教育厅资助项目(05C404)
  • 相关文献

参考文献6

  • 1CHIPMAN H A,KOLACZYK E D, McCulloch R E.Adaptive bayesian wavelet shrinkage[J].Journal of the American Statistics Association, 1997,92(440): 1413-1421. 被引量:1
  • 2侯建华,熊承义,田金文,柳健.图像小波系数的高斯混合模型研究[J].计算机应用,2006,26(3):579-581. 被引量:4
  • 3CHANG S G,Yu B,VETrERLI M.Spatially adaptive wavelet thresholding with context modeling for image denoising[J].IEEE Trans.on Image Processing, 2000,9(9) : 1522-1531. 被引量:1
  • 4MIHEAK M K, KOZINTSEV I, RAMCHANDRAN K, et al.Low-complexity image denoising based on statistical modeling of wavelet coefficients[J].IEEE Signal Processing Letters,1999,6(12) : 300-303. 被引量:1
  • 5CROUSE M S,NOWAK R D,BARANIUK R G.Waveletbased statistical signal processing using hidden Markov models[J].IEEE Trans.on Signal Processing, 1998,46(4) :886 -902. 被引量:1
  • 6CHEN G Y, BUI T D,KRZYZAK A.Image denoising using neighbouring wavelet coefficients[A].Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing(ICASSP)[C], 2004, (2):917-920. 被引量:1

二级参考文献12

  • 1MIHCAK K,KOZINTSEV M,RAMCHANDRAN I,et al.Low-complexity image denoising based on statistical modeling of wavelet coefficients[J].IEEE Signal Processing Letters,1999,6 (12):300-303. 被引量:1
  • 2CHEN GY,BUI TD,KRZYZAK A.Image denoising using neighbouring wavelet coefficients[A].Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing (ICASSP)[C],2004,2.917-920. 被引量:1
  • 3LIU J,MOULIN P.Image denoising based on scale-space mixture modeling of wavelet coefficients[A].Proceedings of the IEEE International Conference on Image Processing (ICIP)[C],1999.386-390. 被引量:1
  • 4SIMONCELLI EP.Modeling the joint statistics of images in the wavelet domain[A].Proceedins of SPIE,44th Annual Meeting[C],1999,3813.188-195. 被引量:1
  • 5MALLAT S.A theory for multiresolution signal decomposition:The wavelet representation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11 (7):674-693. 被引量:1
  • 6SIMONCELLI EP,ADELSON E.Noise removal via Bayesian wavelet coring[A].Proceedings of the IEEE International Conference on Image Processing (ICIP)[C],1996,1.379-382. 被引量:1
  • 7CHANG SG,YU B,VETTERLI M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing,2000,9 (9) 1532-1546. 被引量:1
  • 8CHIPMAN HA,KOLACZYK ED,MCCULLOCH RE.AdaptiveBayesian Wavelet Shrinkage[J].Journal of the American Statistics Association,1997,92 (12):1413-1421. 被引量:1
  • 9CROUSE MS,NOWAK RD,BARANIUK RG.Wavelet-based statistical signal processing using hidden Markov models[J].IEEE Transactions on Signal Processing,1998,46 (4):886-902. 被引量:1
  • 10PIZURICA A,PHILIPS W.Multiscale statistical image models and Bayesian methods[A].Proceedings of SPIE Conference on Wavelet Applications in Industrial Processing[C],2003. 被引量:1

共引文献3

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部