期刊文献+

基于小波域的大容量图像信息隐藏盲提取算法 被引量:2

Image high capacity blind information hiding algorithm based on wavelet transform
下载PDF
导出
摘要 目前基于变换域的信息隐藏算法面临容量较小,提取时需要原始图像的问题。提出了一种基于小波变换的大容量信息隐藏盲提取算法,该算法结合人类视觉特性(HVS)及隐密信息自身的特征,以三次小波变换后的低频分量作为参照自适应地调整中高频子带系数来实现信息的嵌入。实验结果表明,该算法具有容量大的特点,并实现了隐密信息的盲提取。 At present, information hiding algorithm based on transform domain is facing the problem of low capacity and the original image is needed when secret data is extracted. High capacity blind information hiding algorithm based on wavelet transform is presented. Data embedding rule based on consulting low frequency coefficients of thrice discrete wavelet transform (DWT), the algorithm adjusted high frequency coefficients of DWT adaptively according to the characters of human visual system and secret data. Experimental results show that this algorithm has high capacity. The original image is not needed to extract secret data.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第14期3795-3797,3801,共4页 Computer Engineering and Design
基金 贵州省科研基金项目(黔科合20052109)
关键词 信息隐藏 离散小波变换(DWT) 人类视觉系统 大容量 盲提取 data hiding discrete wavelet transform (DWT) human visual system high capacity blind retrieval
  • 相关文献

参考文献8

二级参考文献32

  • 1易开祥 石教英.一种自适应二维数字水印算法.全国第二届信息隐藏与数字水印技术研讨会论文集[M].北京,2000,6.108-112. 被引量:2
  • 2尹康康.多媒体数据数字水印技术研究(硕士学位论文)[M].杭州:浙江大学CAD&CG国家重点实验室,2000,4.. 被引量:1
  • 3MIHCAK K,KOZINTSEV M,RAMCHANDRAN I,et al.Low-complexity image denoising based on statistical modeling of wavelet coefficients[J].IEEE Signal Processing Letters,1999,6 (12):300-303. 被引量:1
  • 4CHEN GY,BUI TD,KRZYZAK A.Image denoising using neighbouring wavelet coefficients[A].Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing (ICASSP)[C],2004,2.917-920. 被引量:1
  • 5LIU J,MOULIN P.Image denoising based on scale-space mixture modeling of wavelet coefficients[A].Proceedings of the IEEE International Conference on Image Processing (ICIP)[C],1999.386-390. 被引量:1
  • 6SIMONCELLI EP.Modeling the joint statistics of images in the wavelet domain[A].Proceedins of SPIE,44th Annual Meeting[C],1999,3813.188-195. 被引量:1
  • 7MALLAT S.A theory for multiresolution signal decomposition:The wavelet representation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11 (7):674-693. 被引量:1
  • 8SIMONCELLI EP,ADELSON E.Noise removal via Bayesian wavelet coring[A].Proceedings of the IEEE International Conference on Image Processing (ICIP)[C],1996,1.379-382. 被引量:1
  • 9CHANG SG,YU B,VETTERLI M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing,2000,9 (9) 1532-1546. 被引量:1
  • 10CHIPMAN HA,KOLACZYK ED,MCCULLOCH RE.AdaptiveBayesian Wavelet Shrinkage[J].Journal of the American Statistics Association,1997,92 (12):1413-1421. 被引量:1

共引文献76

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部