期刊文献+

矢量量化在钢水连铸下渣检测方面的应用 被引量:7

Application of vector quantization theory in steel slag detection of continuous casting
下载PDF
导出
摘要 针对当前钢水连铸下渣检测系统(SWCC-SDS)成本高、难于安装等问题,提出了一种基于矢量量化(VQ)技术的钢水下渣检测方法.对钢水连铸下渣过程进行了研究,根据连铸过程中钢水、钢渣产生的振动差异,确定了把振动信号作为主要检测信号的实施方案.利用振动传感器,搭建了远离钢水的控制系统,解决了钢渣检测的传感器易耗问题.通过VQ技术对经过预处理的实时信号进行特征提取、码本训练,来判断钢水状态,实现连铸下渣的自动控制.实验结果表明,该方法成本低,对现在有设备改造小,下渣检出率在95%以上,符合钢水连铸的生产要求. Abstract. To overcome problems of steel water continuous casting slag detection system (SWCC-SDS), such as high cost and equipment inconvenience, a new SDS based on vector quantization (VQ) technology was put forward. The process detail of SWCC was investigated and analyzed, and the vibration signal was considered to be the main detecting signal according to the difference generated by steel water and slag during the course of SWCC. Automatic control system was established far away from steel water with vibration sensor, which could resolve the problem of the sensor's uncontrolled consumption. After pre-processing the real-time vibration signal, characteristic information was extracted and codebook was trained by VQ, then the status of steel water was identified to realize automatic control for SWCC. Experimental resuits proved that this system requires low cost and little re-building for current devices, and that the slag detection ratio can be more than 95%, and can meet the requirements of SWCC.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第4期556-559,共4页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50374061)
关键词 矢量量化 钢渣检测 连铸 振动 信号处理 vector quantization (VQ) slag detection continuous casting vibration signal processing
  • 相关文献

参考文献12

二级参考文献23

  • 1田岚,白树忠,郑丽娜.基于多特征序贯判决的电话语音声纹鉴别方法研究[J].山东大学学报(工学版),2003,33(6):648-651. 被引量:4
  • 2孙巧玲,袁伟霞.采用振动测量法检测钢包至中间包的下渣[J].钢铁研究,1994,22(3):64-64. 被引量:5
  • 3金钰嘉.国外炉处精炼的发展动向[J].钢铁,1989,(7). 被引量:1
  • 4[1]Aiazzi B, Alba P, Alparone L, et al. Lossless Compression of Multi/Hyper-Spectral Imagery Based on a 3-D Fuzzy Prediction [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(5): 2287-2294. 被引量:1
  • 5[3]Baizert P, Pickering M R, Ryan M J. Compression of Hyperspectral Data by Spatial/Spectral Discrete Cosine Transform [A]. Geoscience and Remote Sensing Symposium[ C]. 2001,4:1859-1861. 被引量:1
  • 6[4]Ryan M J, Arnold J F. The Lossless Compression of AVIRIS Images by Vector Quantization[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997,35 (3): 546-550. 被引量:1
  • 7[5]Qian S E, Hollinger A B, Williams D, et al. Vector Quantization Using Spectral Index-Based Multiple Subcodebooks for Hyperspectral Data Compression[ J]. IEEE Transactions on Geoscience and Remote Sensing ,2000,38(3): 1183-1190. 被引量:1
  • 8[6]Pickering M R, Ryan M J. Efficient Spatial-Spectral Compression of Hyperspectral Data [ J]. IEEE Transactions on Geoscience and Remote Sensing ,2001,39(7): 1536-1539. 被引量:1
  • 9[7]Pickering M R, Ryan M J. Compression of Hyperspectral Data Using Vector Quantisation and the Discrete Cosine Transform [ A ]. 2000 International Conference on Image Processing[ C ]. 2000,2:195- 198. 被引量:1
  • 10Dauby P. H. Steel Quality Leapfrog-Detections and Elimination of Landle-to-Tundish Slag Carry-Over. I & Sm, 1990(7):27-32. 被引量:1

共引文献42

同被引文献48

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部