期刊文献+

数据挖掘技术在电子商务推荐系统中的应用研究 被引量:4

Research on the Application of the Data Mining Technique to the E-commerce Recommender System
下载PDF
导出
摘要 在对数据挖掘技术和电子商务推荐系统进行研究的基础上,设计和提出了一种基于聚类算法的图书推荐系统,并将其应用到网上书店中,该系统在找近邻之前对所有资源进行聚类,缩小了找近邻的范围,从而大大提高了系统的运行效率,在实际应用中取得了较好的推荐效果。 After studying the Data Mining technique and the E-commerce Recommender System, this paper designs and presents a book recommender system based on the clustering algorithm and applies it to net-bookstores. This system clusters all the resources first before looking for near neighbors to narrow the searching scope, and therefore greatly promotes the efficiency of the system and achieves good recommending results in its application.
出处 《微电子学与计算机》 CSCD 北大核心 2007年第4期197-199,共3页 Microelectronics & Computer
关键词 数据挖掘 电子商务 推荐系统 data mining e-commerce reconmmender system
  • 相关文献

参考文献3

二级参考文献20

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52. 被引量:1
  • 3Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70. 被引量:1
  • 4Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186. 被引量:1
  • 5Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217. 被引量:1
  • 6Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201. 被引量:1
  • 7Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295. 被引量:1
  • 8Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212. 被引量:1
  • 9Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38. 被引量:1
  • 10Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997. 被引量:1

共引文献604

同被引文献10

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部