期刊文献+

艾滋病传播数学模型的建立与分析 被引量:1

Analysis and Construction of the Mathematical Model on the Spread of AIDS
下载PDF
导出
摘要 众所周知,艾滋病对中国社会带来了重要的影响.给出了艾滋病的数学模型,并讨论了其解的存在性和稳定性.同时,给出了人口增长与人口流动对艾滋病传播的影响模型,所得结果对我国今后在预防和控制艾滋病的传播方面带来一定的参考价值. It is well known the AIDS has a tremendous effect on Chinese society. This paper is about mathematical models of the spread of AIDS. Its existence and stability of solution is also given. Furthermore, we study a model of AIDS with flow and increase of population. The data are helpful to control and prevent the transmission of AIDS.
机构地区 德州学院数学系
出处 《德州学院学报》 2007年第2期35-38,共4页 Journal of Dezhou University
关键词 艾滋病疾病模型 偏微分方程 潜伏期 稳定性 阈值 AIDS epidemic partial differential equation stability latent period threshold
  • 相关文献

参考文献7

  • 1Xue-zhi Li,Geni Gupur,Guang-tian Zhu.Mathematical Theory of Age-structured Epidemic Dynamics[M].Research Information Ltd,Hertfordshire,2002:64-71. 被引量:1
  • 2Xue-zhi Li,Geni Gupur,Guang-tian Zhu.Existence and uniqueness of epidemic states for the age-structured MSEIR epidemic model[J].Acta Mathematical Applicatae Sinica,English Series,2002,18 (3):441 -454. 被引量:1
  • 3Hoppensteadt F.An age structured epidemic model[J].JFranklin Inst,1974,197:325 -333. 被引量:1
  • 4陈兰荪著..数学生态学模型与研究方法[M].北京:科学出版社,1988:404.
  • 5原三领,韩丽涛,马知恩.一类潜伏期和染病期均传染的流行病模型[J].生物数学学报,2001,16(4):392-398. 被引量:54
  • 6Ahmed E Yassen MT.On Branching processes and the Early stages of the spread of an Epidemic[J].Journal of Biomathematics,1998,13(2):129-131. 被引量:1
  • 7Anderson,R.M.The population Dynamics of Infectious Diseases:Theory and Application[M].Chapman& Hall,1982. 被引量:1

二级参考文献7

  • 1[1]Kermark M D. Mokendrick A G. Contributions to the mathematical theory of epidemics[J]. Part I, Proc Roy Soc, A, 1927, 115(5):700-721. 被引量:1
  • 2[2]Cooke K L. Stability analysis for a vector disease model[J]. Rocky Mount J Math, 1979, 9(1):31-42. 被引量:1
  • 3[3]Hethcote H W. Qualititative analyses of communicable disease models[J]. Math Biosci, 1976, 28(3):335-356. 被引量:1
  • 4[4]Capasso V. Mathematical structures of epidemic systems[J]. Lecture notes in biomath[M]. 97 Springer-verlag,1993. 被引量:1
  • 5[5]Hethcote H W, Liu W M, Leven S A. Dynamical behavior of epidemiological models with nonlinear incidence rates[J]. Math Biosci, 1987, 25(3):359-380. 被引量:1
  • 6[6]Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model[J]. Math Biosci, 1978, 42(1):41-61. 被引量:1
  • 7[7]Bailey N T J. The Mathematical Theorey of Infectious Diseases.[M]. London: Griffin, 1975. 被引量:1

共引文献53

同被引文献31

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部