摘要
分析了基于身份加密体制的构造框架,利用剩余类环上的椭圆曲线密码实现了一种新的基于身份的加密机制.剩余类环上的椭圆曲线的群运算同时具有RSA门限单向函数的性质和椭圆曲线离散对数单向函数的性质,将这两种性质分别应用于基于身份的加密系统的密钥颁发和加解密阶段,使得新的基于身份的加密体制具有运算量小,易于分析的优点.用mathematica工具分析了一种伪群运算,给出了它的基本运算性质,利用这种伪群算法使明文更为安全和方便地嵌入到密文中.
The configuration of ID-based Encryption is analyzed. A new ID-based Encryption is realized with the Elliptic curve over the residue class ring. The group operation on Elliptic Curve Cryptogsystem (ECC) over the ring has the property of RSA trapdoor function and the property of Elliptic Cune Discrete Logarithm Problem(ECDLP) trapdoor function. The two properties are used in the step of Key Extract and Encryption respectively. The new ID-based Encryption has the advantages of good performance and analytical convenience. A pseudo group operation is discussed, and the basic property of this operation is given. With the pseudo point operation, the embedment of the plain text can be easier and more secure.
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2007年第2期290-293,336,共5页
Journal of Xidian University
基金
国家自然科学基金面上项目(6047302)
国家自然科学基金重点项目(60633020)
国家自然科学基金项目(60672112)
陕西省自然科学基础研究计划资助项目(2005F28)
关键词
椭圆曲线密码
基于身份
剩余类环
elliptic curve cryptography
ID-based
residue class ring