期刊文献+

环Z_n上广义圆锥曲线和公钥密码体系 被引量:7

The generalized conic curves over Z_n and Public-Key cryptosystem
下载PDF
导出
摘要 引入了环Zn上广义圆锥曲线Rn(a,b,c),并在Rn(a,b,c)上定义了加法运算,这里n=pq,p、q是不同的奇素数,证明了Zn上的广义圆锥曲线在加法运算下构成一个有限交换群.然后定义了环Zn上Ⅰ类Rn(a,b,c)和Ⅱ类Rn(a,b,c),指出环Zn上Ⅰ类Rn(a,b,c)等价于环Zn上的圆锥曲线Cn(a,b),可用于构造公钥密码体系,而Ⅱ类Rn(a,b,c)则不宜用来构造公钥密码体系.作为一个实例,给出了KMOV签名方案在Ⅰ类Rn(a,b,c)上的数字模拟. In this paper, the authors introduce a class of generalized conic curve(GCC) over the residue class ring Zn with an addition operation on the points of GCCs, where n is a product of two large distinct primes. They show that GCC under the defined addition forms a finite Abelian group(GCCG). They define that the Type Ⅰ and Type Ⅱ of GCCs over the residue class ring Zn, and point out that Type Ⅰ is equivalent to (2. (a, b ) based on the conic curves over the ring Z., which can be used to construct various cryptosystems, but Type Ⅱ can not be in public key cryptosystem. As an example,GCCG analogues of KMOV digital signature scheme is proposed.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期213-220,共8页 Journal of Sichuan University(Natural Science Edition)
基金 现代通信国家重点实验室基金(51436010505SC010)
关键词 环Zn 广义圆锥曲线 公钥密码体系 数字签名方案 residue class ring Zn, generalized conic curve, Public-Key cryptosystem, digital signature scheme
  • 相关文献

参考文献16

  • 1Diffie W,Hellman M E.New directions in cryptography[J].IEEE Transactions on Information Theory,1976,22(6):644. 被引量:1
  • 2Rivest R L,Shamir A,Adleman L.A method for obtaining digital signatures and public key cryptosystems[J].Comn ACM,1978,21:120. 被引量:1
  • 3Koyama K,Maurer U,Okamoto T,et al.New PublicKey schemes based on elliptic curves over the ring Zn[C]//Advances in Cryptology-CRYPTO'91,Lecture Notes in Computer Science,New York:Springer-Verlag,1992. 被引量:1
  • 4Hastad J.On using RSA with low exponent in a public key network[J].Proc of Crypto,1985,85:403. 被引量:1
  • 5Wiener M J.Cryptanalysis of short RSA secret exponents[J].IEEE Transactions on Information Theory,1990,36(3):553. 被引量:1
  • 6Jonge W,Chaum D.Attacks on some RSA signatures[J].Proc.of Crypto,1985,85:18. 被引量:1
  • 7孙琦,彭国华,朱文余,等.环Zn上圆锥曲线RSA型公钥密码体系和抗小私钥d攻击[C]//密码学进展-Chinacrypt.北京:中国科学技术出版社,2006. 被引量:2
  • 8Ming hua Qu.Scott vanstone,On ID-Based cryptosystemsover Zn[R].庆贺柯召院士九十寿辰暨国际数论学术研讨会上的报告.成都,四川大学数学学院,2000. 被引量:1
  • 9朱文余 孙琦.环Zn上椭圆曲线及数字签名方案.电子与信息学报(原电子科学学刊),2003,25(1):40-40. 被引量:3
  • 10朱文余,孙琦.环Z_n上椭圆曲线的密钥交换协议[J].电子学报,2005,33(1):83-87. 被引量:14

二级参考文献35

  • 1朱文余,孙琦.环Z_n上椭圆曲线的密钥交换协议[J].电子学报,2005,33(1):83-87. 被引量:14
  • 2孙琦,朱文余,王标.环Z_n上圆锥曲线和公钥密码协议[J].四川大学学报(自然科学版),2005,42(3):471-478. 被引量:44
  • 3张明志.用圆锥曲线分解整数[J].四川大学学报(自然科学版),1996,33(4):356-359. 被引量:30
  • 4曹珍富.基于有限域Fp上圆锥曲线的公钥密码系统.密码学进展-Chinacrypt’98[M].科学出版社,1998.45-49. 被引量:1
  • 5MingHuaQu ScottVanstone.OnID-BasedCryptosystemsoverZn[R]..成都:庆贺柯召院士九十寿辰暨国际数论学术研讨会上的报告[C].,2000.13-26. 被引量:1
  • 6朱文余 孙琦.环Zn上椭圆曲线及数字签名方案.电子与信息学报(原电子科学学刊),2003,25(1):40-40. 被引量:3
  • 7孙琦 张起帆 彭国华.计算群元的整数倍的一种算法及其在公钥密码体制中的应用[A]..密码学进展-ChinaCrypt2002.第七届中国密码学学术会议论文集[C].北京:电子工业出版社,.117-124. 被引量:2
  • 8W Diffie, M E Hellman. New directions in cryptography [J]. IEEE.Transactions on Information Theory, 1976,22(6) :644 - 654. 被引量:1
  • 9E Okamoto. Key Distribution Systems Based on Idenfication Infonmtion[A]. Advances in Cryptology: Proceedings of Crypto'87[C]. C Pomerance, ed., lecture Notes in Computer Science 293,Springer-Verlag, NY. 1988.194- 202. 被引量:1
  • 10H Sakazaki,E Okamoto,M Mambo. ID-Based Key Distribution System over an Elliptic Curve [A]. American Mathematical Society,Contemporary Mathematics 1999 (225) [C]. 1999. 215 - 224 (Fourth International Conference on Finite Fields). 被引量:1

共引文献75

同被引文献45

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部