摘要
本文讨论了半线性波动方程(2t-Δx)uε+F(εα|tuε|p-1tuε)=0(t,x)∈[0,∞[×R3uε|t=0=εU0(r,r-εr0),tuε|t=0=Ul(r,r-εr0)。当p>2,α=p-2时解在到达焦点(r0,0)前无穷远处的性态,其中F在R上是一致Lipschitz的。通过变量变换,将问题转化为负无穷远处的初、边值问题,证明解的存在唯一性,引入线性解讨论脉冲波在t→-∞的传播性态,并引入散射算子说明了脉冲波越过焦点的过程。
We discuss the behavior of the solution to the wave equation {(偏dt^2-△x)u^ε+F(ε^α|偏dtu^ε|^p-1偏dtu^ε)=0 (t,x)∈[0,∞[×R^3 /u^ε|t=0=εU0(r,r-r0/ε),偏dtu^ε|t=0=Ul(r,r-r0/ε) at infinity before the focus, where p 〉 2, a = p - 2 and F is unifomly Lipschitiz on R. By changing the problem into a mixed problem with initial value at negative infinity and proving the existence and uniqueness of the solution to the producing problem, it discusses the propagation of pulses at t = - ∞ and introduces a scattering operator to describe the process that the pulses across the focus.
出处
《石河子大学学报(自然科学版)》
CAS
2006年第6期779-781,共3页
Journal of Shihezi University(Natural Science)
关键词
特征线
混合问题
初值
散射算子
characteristics
mixed problem
initial value
scattering operator