期刊文献+

Quality of Service Routing Strategy Using Supervised Genetic Algorithm 被引量:4

Quality of Service Routing Strategy Using Supervised Genetic Algorithm
下载PDF
导出
摘要 A supervised genetic algorithm (SGA) is proposed to solve the quality of service (QoS) routing problems in computer networks. The supervised rules of intelligent concept are introduced into genetic algorithms (GAs) to solve the constraint optimization problem. One of the main characteristics of SGA is its searching space can be limited in feasible regions rather than infeasible regions. The superiority of SGA to other GAs lies in that some supervised search rules in which the information comes from the problems are incorporated into SGA. The simulation results show that SGA improves the ability of searching an optimum solution and accelerates the convergent process up to 20 times. A supervised genetic algorithm (SGA) is proposed to solve the quality of service (QoS) routing problems in computer networks, The supervised rules of intelligent concept are introduced into genetic algorithms (GAs) to solve the constraint optimization problem. One of the main characteristics of SGA is its searching space can be limited in feasible regions rather than infeasible regions. The superiority of SGA to other GAs lies in that some supervised search rules in which the information comes from the problems are incorporated into SGA. The simulation results show that SGA improves the ability of searching an optimum solution and accelerates the convergent process up to 20 times.
出处 《Transactions of Tianjin University》 EI CAS 2007年第1期48-52,共5页 天津大学学报(英文版)
基金 China Postdoctoral Foundation (No2005037529)Doctoral Foundation of Education Ministry of China (No2003005607)Tianjin High Education Science Development Foundation (No20041325)
关键词 supervised genetic algorithm supervised search rules QoS routing 遗传算法 搜索规则 QoS路由 优化技术
  • 相关文献

参考文献10

  • 1Wang Zhengying;Shi Bingxin;Zhao Erdun.Bandwidth-delay-constrained least-cost multicast routing based on heuristic genetic algorithm[J],2001(7-8). 被引量:1
  • 2Yao Xin.Evolutionary Computation,2002. 被引量:1
  • 3Zhao-XiaWang Zeng-QiangChen Zhu-ZhiYuan.QoS Routing Optimization Strategy Using Genetic Algorithm in Optical Fiber Communication Networks[J].Journal of Computer Science & Technology,2004,19(2):213-217. 被引量:3
  • 4Fei Xiang;Luo Junzhou;Wu Jieyi.QoS routing based on genetic algorithm[J],1999(15-16). 被引量:1
  • 5Cui Xunxue;Lin Chuang;Wei Yaya.A multiobjective model for QoS multicast routing based on genetic algorithm[C],2003. 被引量:1
  • 6Chen Shigang;Nahrstedt K.An overview of quality of service routing for next-generation high-speed networks:Problems and solutions[J],1998(06). 被引量:1
  • 7David H Wolpert;William G Macready.No free lunch theorems for optimization[J],1997(01). 被引量:1
  • 8Yao X;Liu Y.A new evolutionary system for evolving artificial neural networks[J],1997(03). 被引量:1
  • 9Sarker R;Mohammadian M;Yao X.Evolutionary Optimization,2002. 被引量:1
  • 10Yao Xin.Evolutionary Computation:Theory and Applications,1999. 被引量:1

二级参考文献13

  • 1Andrew S Tanenbaum. Computer Networks. 3rd ed.,Tsinghua University Press, 1998. 被引量:1
  • 2Govind P Agrawal. Fiber-Optic Communication Systems. New York: John Wiley & Sons, Inc. (US), 1997. 被引量:1
  • 3Shigang Chen, Nahrstedt Klara. An overview of quality of service routing for next-generation high-speed networks: Problems and solutions. IEEE Network, 1998,12(6): 64-79. 被引量:1
  • 4Xiang Fei, Junzhou Luo, Jieyi Wu et al. QoS routing based on genetic algorithm. Computer Communications. 1999.22(15-16): 1392-1399. 被引量:1
  • 5Wang Zheng, Jon Crowcroft. Quality-of-service routing for supporting multimedia applications. IEEE J.Selected Areas in Communications, 1996, 14(7): 1228-1234. 被引量:1
  • 6Chou Hsinghua, Premkumar G, Chao-Hsien Chu. Genetic algorithms for communications network design -An empirical study of the factors that influence performance. IEEE Trans. Evolutionary Computation, 2001,5(3): 236-249. 被引量:1
  • 7Berna Dengiz, Fulya Altiparmak, Smith Alice E. Efficient optimization of all terminal networks using an evolutionary approach. IEEE Trans. Reliability, 1997,46(1): 18-26. 被引量:1
  • 8Sayoud H, Takahashi K, Vaillant B. Designing communication networks topologies using steady-genetic algorithms. IEEE Communications Letters, 2001, 5(3):113-115. 被引量:1
  • 9Wang Zhengying, Shi Bingxin, Erdun Zhao.Bandwidth-delay-constrained least-cost multicast routing based on heuristic genetic algorithm. Computer Communications, 2001, 24(7-8): 685--692. 被引量:1
  • 10Cedric Davies, Pawan Lingras. Genetic algorithms for rerouting shortest paths in dynamic and stochastic networks. European J. Operational Research, 2002, 144(1):27-38. 被引量:1

共引文献2

同被引文献33

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部