期刊文献+

基于Agent计算金融的计算机仿真研究综述 被引量:4

Overviw of Agent Based Computational Finance
下载PDF
导出
摘要 传统的金融学研究方法为“由上及下”,此类方法倚重于总体把握,而忽视个体行为,特别是缺乏个体以及个体与环境之间的互动。基于Agent的计算金融是一种新的研究金融市场行为的工具。首先阐述了金融市场本身的复杂性和传统金融学存在的一些困惑。在这基础上提出了基于Agent的计算金融方法。其次,概要介绍了目前基于Agent的人工金融市场的主要设计方法,并且提出了在设计过程中要注意的一些问题。最后,分析了这种方法相对于传统金融学研究方法的优点和存在的问题,并进一步提出了该领域的未来研究方向。 Compared with the bottom up approach used in agent - based computational finance, traditional finance emphasizes particularly on the equilibrium of the whole markets, while ignoring the action of individuals, especially the interaction between the individual and environment. Agent - based computational finance is a new method for simulating actual financial market. Firstly, this paper concentrates on the character of complexity in finance market and analyses the disadvantages of traditional finance compared with this simulation approach. By surveying research on agent - based models in finance, this paper illuminates the main aspects of designing agent - based artificial financial market as well as some noticeable issues in the process of designing it. Finally, based on the conclusions of the advantages of agent - based computational finance as well as its drawbacks, this paper gives the prospect in this research field.
作者 袁毅贤 梁莹
出处 《计算机仿真》 CSCD 2007年第2期262-265,共4页 Computer Simulation
关键词 计算金融 人工金融市场 复杂性 机器学习 Computational finance Artificial financial markets Complexity Machine learning
  • 相关文献

参考文献25

  • 1[美]米歇尔 沃尔德罗普著,陈玲译.复杂:诞生于秩序与混沌边缘的科学[M].三联书店,1997. 被引量:1
  • 2Blake LeBaron. A Builder's Guide to Agent Based Financial Markets [ J ]. Quantitative Finance, 2001,1 (2) :254 - 261. 被引量:1
  • 3N T Chan, B LeBaron, A W Lo, T Poggio. Agent - Based Models of Financial Markets: A Comparison with Experimental Markets[R]. MIT Sloan Working Paper, Social Science Research Network Electronic Library, 2001,4195( 1 ). 被引量:1
  • 4D K Gode, S Sunder. Allocative Efficiency of Markets with Zero Intelligence Agent Market as a Partial Substitute for Individual Rationality[J]. Journal of Political Economy,1993,101 ( 1 ) :119 - 137. 被引量:1
  • 5S Sunder. Market as Artifact Aggregate Efficiency from Zero Intelligence Traders[ J]. MIT Press, 2004. 被引量:1
  • 6S Schulenburg, P Ross. Explorations in LCS Models of Stock Trading[J]. Lecture Notes in Artificial Intelligence,2002,2321:150 - 179. 被引量:1
  • 7R Axelrod. The evolution of strategies in the iterated prisoner's dilemma[ C]. Research notes in AI, 1987. 被引量:1
  • 8N Jin, E P K Tsang. Alternating - offers bargaining problems, a co - evolutionary approach[ C]. Second World Congress of the Game Theory Society (Game2004) , Marseille, 2004. 被引量:1
  • 9W B Arthur. Inductive Reasoning and Bounded Rationality[ J].American Economic Review, 1994, 84(2) :406 - 411. 被引量:1
  • 10W B Arthur, J H Holland, B LeBaron, R Palmer, P Tayler. Asset Pricing under endogenous expectations in an artificial stock market[C]. The Economy as an Evolving Complex System Ⅱ, Addison -Wesley, Reading, MA, 1997. 被引量:1

同被引文献74

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部