摘要
The vesicant problem during the process of preparing closed-cell aluminum foam by molten body transitional foaming process was discussed and the effect of granularity and addition of TiH2on porosity of closed-cell aluminum foam was investigated. The static compressive behavior of closed-cell aluminum foam and the influence of porosity on static compressive property of closed-cell aluminum foam were researched as well. The results show that with increasing granularity of TiH2,the porosity of closed-cell aluminum foam firstly increases and then decreases gradually, the granularity should be controlled in the range of 38-74μm which can result in higher porosity. The porosity of closed-cell aluminum foam increases with the increasing addition of TiH2, and the addition of TiH2 should be controlled from 1.5% to 2.5% which can result in homogeneous cell and moderate strength of closed-cell aluminum foam. The compressive process of closed-cell aluminum foam obviously displays linear elastic phase, plastic collapse phase, and densification phase, and the compressive strength grows with decreasing porosity.
The vesicant problem during the process of preparing closed-cell aluminum foam by molten body transitional foaming process was discussed and the effect of granularity and addition of TiH2 on porosity of closed-cell aluminum foam was investigated. The static compressive behavior of closed-cell aluminum foam and the influence of porosity on static compressive property of closed-cell aluminum foam were researched as well. The results show that with increasing granularity of TiH2, the porosity of closed-cell aluminum foam firstly increases and then decreases gradually, the granularity should be controlled in the range of 38-74μm which can result in higher porosity. The porosity of closed-cell aluminum foam increases with the increasing addition of TiH2, and the addition of TiH2 should be controlled fi'om 1.5% to 2.5% which can result in homogeneous cell and moderate strength of closed-cell aluminum foam. The compressive process of closed-cell aluminum foam obviously displays linear elastic phase, plastic collapse phase, and densification phase, and the compressive strength grows with decreasing porosity.
出处
《中国有色金属学会会刊:英文版》
CSCD
2006年第A03期1442-1445,共4页
Transactions of Nonferrous Metals Society of China
基金
Project (2002AA334060) supported by the Hi-tech Research and Development Program of China
关键词
铝合金
泡沫材料
粒度
静力
TiH2
closed-cell aluminum foam
granularity
porosity
mechanical behavior