摘要
Al-Zn-Mg-Cu-Zr ingots with diameter of 200 mm were made by low frequency electromagnetic casting (LFEC) and conventional direct chill (DC) casting process. The results show that under the low frequency electromagnetic field (25 Hz, 32 mT) the microstructures of LFEC ingot from the border to the center on the cross section are all equiaxed grains, and the grains are much finer and more uniform than that of DC ingot. The magnetic flux density plays an important role in the microstructure formation of LFEC ingots. With increasing the magnetic flux density from 0 mT to 32 mT, grains become finer (from about 120 urn to 30 urn) and more uniform. While, with increasing the magnetic flux density from 32 mT to 46 mT, the grains change much slowly. In the range of experimental parameters, the optimum magnetic flux density for LFEC process is found to be 32 mT.
Al-Zn-Mg-Cu-Zr ingots with diameter of 200 mm were made by low frequency electromagnetic casting (LFEC) and conventional direct chill (DC) casting process. The results show that under the low frequency electromagnetic field (25 Hz, 32 mT) the microstructures of LFEC ingot from the border to the center on the cross section are all equiaxed grains, and the grains are much finer and more uniform than that of DC ingot. The magnetic flux density plays an important role in the microstructure formation of LFEC ingots. With increasing the magnetic flux density from 0 mT to 32 mT, grains become finer (from about 120 μm to 30 μm) and more uniform. While, with increasing the magnetic flux density from 32 mT to 46 mT, the grains change much slowly. In the range of experimental parameters, the optimum magnetic flux density for LFEC process is found to be 32 mT.
出处
《中国有色金属学会会刊:英文版》
CSCD
2006年第A03期1397-1401,共5页
Transactions of Nonferrous Metals Society of China
基金
Project(2005CB623707) supported by the National Basic Research Program of China
关键词
电磁场
铝
镁
锌
合金
强度
有色金属
Al-Zn-Mg-Cu alloy
DC casting
low frequency electromagnetic field
magnetic flux density
microstructure