期刊文献+

航天器交会两点边界值问题 被引量:14

Two Point Boundary Value Problem in Space Rendezvous
下载PDF
导出
摘要 从绝对运动和相对运动两方面讨论近地空间航天器交会中的两点边界值问题。其中,绝对运动涉及多圈Lambert问题,以Lagrange时间方程为研究工具,而相对运动Lambert问题应用C-W线性解。对圆轨道之间的双冲量转移,给定转移角与转移时间,研究最小变轨速度增量所对应的转移圈数与轨道参数的求解方法,提出满足最小变轨速度增量要求的多圈转移的工程图解法,并从工程应用出发,在飞行时间约束下,按最小速度增量要求,阐述航天器交会两点之间飞行轨道(轨迹)设计方法。这种方法将飞行轨迹划分为初始漂移段、轨道转移段与终端停泊段三部分,应用两点边界值问题的解,选择两次冲量机动时刻,使速度增量之和最小。模拟算例表明,这种方法对航天器交会设计是适用的、有效的。 In this paper, the two point boundary value problem is studied for spacecraft rendezvous. Main geometrical properties of transfer orbit are interpreted. The Lagrange equation for transfer time is used to analyze the relationship between the transfertime and orbital parameters. For the transfer between circular orbits, the relations between the velocity increment, the transfer revolutions and the semi-major axis are investigated via diagrams to find the minimum-△v transfer orbit and to meet needs of engineering design. Also the Clohessy-Wiltshire equations are used to obtain the relative lambert solutions. These methods can be applied to find flight paths that enable velocity increment(rcquircd by transfer between two points for a given time-interval)minimal.
作者 朱仁璋 蒙薇
出处 《宇航学报》 EI CAS CSCD 北大核心 2006年第6期1182-1186,共5页 Journal of Astronautics
关键词 Lambert问题 Lagrange时间方程 C-W方程 空间交会 Lambert' s problem Lagrange transfer-time equation C-W equations Space rendezvous
  • 相关文献

参考文献9

  • 1Battin R H. An introduction to the mathematics and methods of astrodynamics[M]. AIAA Education Series, AIAA, Reston, VA, 1987,and 1999 (revised edition). 被引量:1
  • 2Clohessy W H and Wihshire R S. Terminal guidance system for satellite rendezvous[J]. Journal of the Aerospace Sciences, 1960,27(9). 被引量:1
  • 3Mullins L D. Initial value and two point boundary value solutions to the clohessy-wiltshire equations[J]. Journal of the Astronautical Sciences,1992,40(4) :487 - 501. 被引量:1
  • 4朱仁璋,尹艳,汤溢.空间交会N次推力机动状态方程及控制算法[J].宇航学报,2005,26(2):206-211. 被引量:12
  • 5朱仁璋,汤溢,尹艳.空间交会最终平移轨迹安全模式设计[J].宇航学报,2004,25(4):443-448. 被引量:32
  • 6Prussing J E. A class of optimal two-impulse rendezvous using multipie-revolution lambert solutions[J]. Advances in the Astronautical Sciences, Univelt. Inc. San Diego, CA, 2000. 被引量:1
  • 7Kaplan M H. Modem spacecraft dynamics and control, Wiley: 1976. 被引量:1
  • 8Prussing J E. Geometrical interpretation of the angles α and β in lambert' s problem [ J ]. Journal of Guidance Control, and Dynamics,1979,2(5). 被引量:1
  • 9Haijun Shen, Panagiotis Tsiotras. Optimal two-impulse rendezvous using multiple-revolution lambert solutions [ J ]. Journal of Guidance, Control, and Dynamics, 2003,26( 1 ). 被引量:1

二级参考文献8

共引文献40

同被引文献130

引证文献14

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部