摘要
从绝对运动和相对运动两方面讨论近地空间航天器交会中的两点边界值问题。其中,绝对运动涉及多圈Lambert问题,以Lagrange时间方程为研究工具,而相对运动Lambert问题应用C-W线性解。对圆轨道之间的双冲量转移,给定转移角与转移时间,研究最小变轨速度增量所对应的转移圈数与轨道参数的求解方法,提出满足最小变轨速度增量要求的多圈转移的工程图解法,并从工程应用出发,在飞行时间约束下,按最小速度增量要求,阐述航天器交会两点之间飞行轨道(轨迹)设计方法。这种方法将飞行轨迹划分为初始漂移段、轨道转移段与终端停泊段三部分,应用两点边界值问题的解,选择两次冲量机动时刻,使速度增量之和最小。模拟算例表明,这种方法对航天器交会设计是适用的、有效的。
In this paper, the two point boundary value problem is studied for spacecraft rendezvous. Main geometrical properties of transfer orbit are interpreted. The Lagrange equation for transfer time is used to analyze the relationship between the transfertime and orbital parameters. For the transfer between circular orbits, the relations between the velocity increment, the transfer revolutions and the semi-major axis are investigated via diagrams to find the minimum-△v transfer orbit and to meet needs of engineering design. Also the Clohessy-Wiltshire equations are used to obtain the relative lambert solutions. These methods can be applied to find flight paths that enable velocity increment(rcquircd by transfer between two points for a given time-interval)minimal.
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2006年第6期1182-1186,共5页
Journal of Astronautics