摘要
应用Lagrange转移时间方程研究空间交会中的Lambert问题,包括经典Lambert问题(飞行弧段不足一圈的椭圆型轨道转移)与多圈Lambert问题(飞行圈数超过一圈的轨道转移),阐述转移轨道的几何特性与转移轨道类型,分析转移时间与转移轨道参数及变轨速度增量之间的关系。对航天器交会中常用的圆轨道之间的双冲量转移,给定转移角与转移时间,阐述最小变轨速度增量所对应的转移圈数与轨道参数的求解方法,提出满足最小变轨速度增量要求的轨道转移的图解法。对给定的初始分离角与交会时间,按最小变轨速度增量要求,确定航天器交会的初始漂移时间、双冲量轨道转移时间与终端停泊时间。
Lambert's problem is studied for spacecraft rendezvous. Main geometrical properties of transfer orbit are interpreted. The Lagrange equation for transfer time was used to analyze the relationship between the transfer-time and orbital parameters. A graph method was presented to find the optimal transfer revolution; and the minimum-△v, fixed-time, two-impulse rendezvous between two spacecraft orbiting along two coplanar unidirectional circular orbits were studied. For a given rendezvous time and an initial separation angle, optimal initial and termingal coasting periods can be found via a comparing-one-by-one method to obtain the globally minimum-△v.
出处
《中国空间科学技术》
EI
CSCD
北大核心
2006年第6期49-55,共7页
Chinese Space Science and Technology