期刊文献+

基于决策树SVM分类器的感兴趣区域定位方法 被引量:3

An Approach for ROI Fast Detection Based on Decision Tree SVM Classifier
下载PDF
导出
摘要 感兴趣区域定位是提取目标特征,进行目标识别与跟踪等后续处理的重要基础。由于大尺寸遥感图像的光谱特性和目标形状均很复杂,通常采用的基于光谱特征的分割方法和基于边缘的区域生长技术不合适,从模式分类角度考虑遥感图像中感兴趣区域快速定位问题,提出一种基于决策二叉树支持向量机的纹理分类方法,将分类器分布在各个结点上,构成了多类支持向量机,减少了分类器数量和重复训练样本的数量。在SPOT图像上的实验结果表明,该方法实现感兴趣区域的快速定位有较高的分类正确率。 Detecting regions of interest (ROIs) is the base step for object' s feature extraction, identification and tracking. The segmentation algorithms based on optical characteristics and the region growing method based on edges are not suitable, because optical characteristics and object' s shape are complex in remote sensing imagery with big size. So a texture classification method based on support vector machines (SVMs) decision binary tree is proposed, This method distributes classifier to each nodes which constitutes multi - class SVM. It can reduce the number of SVM classifier and duplicate training samples. Furthermore, the experiments are done on SPOT scenes, The results show that this method is adaptable, has high accuracy and speed.
出处 《计算机仿真》 CSCD 2007年第1期209-212,共4页 Computer Simulation
关键词 感兴趣区域 决策二叉树 支持向量机 纹理分析 图像分类 ROI: Decision - binary tree Support vector machine(SVM) Texture analysis Image classification
  • 相关文献

参考文献8

  • 1Qi Tian,Ying Wu,T S Huang.Combine User Defined Region-of-Interest and Spatial Layout for Image Retrieval[J].Image Processing,2000,(3):746-749. 被引量:1
  • 2D B Sher.the Influence of Object Size on the Regions of Interest for Edge Detection-Preliminary Results[J].Pattern Recognition,1992,(3):294-297. 被引量:1
  • 3Shan Yu.Urban Area Detection in SPOT Images Using Multi-Scale Technique and map knowledge[J].IEEE 1999 International,1992,(1):62-65. 被引量:1
  • 4V N Vapnik.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.45-50. 被引量:1
  • 5B Baesens,et al.An Empirical Assessment of Kernel Type Performance for Least Squares Support Vector Machine Classifiers[C].Proceedings of the Fourth International Conference (KES'2000):313-316. 被引量:1
  • 6R M Haralick,et al.Texture Feature for Image Classification[J].IEEE Trans.System Man and Cybernetics,1973,3(6):610-621. 被引量:1
  • 7吴更石,梁德群,田原.基于分形维数的纹理图像分割[J].计算机学报,1999,22(10):1109-1113. 被引量:15
  • 8B S Sebastiano.A New Search Algorithm for Feature Selection in Hyperspectral Remote Sensing Images[J].IEEE Trans.Geoscience and Remote Sensing,2001.1360-1367. 被引量:1

二级参考文献1

  • 1Chen C C,IEEE Trans Med Imaging,1989年,8卷,6期,133页 被引量:1

共引文献14

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部