期刊文献+

一种基于交集的聚类组合算法 被引量:1

Clustering combination algorithm based on intersection
下载PDF
导出
摘要 聚类作为一种无监督的学习,能根据数据间的相似程度自动地进行分类。提出的基于交集的聚类组合新方法,借鉴了选举投票的思想。给定同一数据集的不同聚类结果,此算法先求出不同聚类结果中每个簇的对应关系,然后计算这几个聚类结果对应簇的交集,对剩余的有争议对象进行投票,最后把投票之后仍未确定归属的对象分配给最近对象所在的簇,或者不经过投票直接将有争议的对象分配给最近对象所在的簇。实验表明,两种方法都能明显改善聚类质量,投票后得到的结果要略优于不投票的结果。 Being an unsupervised learning,clustering is a division of data into groups of similar objects.This paper presents a new intersection-based clustering combination algorithm,which imitates the ways of voting.Assigns some different clustering results of a same data set,this algorithm extracts the corresponding relations of each cluster in these different clustering results first,and then compute the intersection of corresponding clusters of these results,put the remaining disputable objects to vote,finally distribute the objects in abeyance after voting to the nearest object's cluster,or distribute the remaining disputable objects to the nearest object's cluster without voting.The experiment indicates both methods can obviously improve the clustering performance, the result with voting is better than the result without voting.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第2期177-179,243,共4页 Computer Engineering and Applications
基金 四川省重大基础研究项目子课题(04JY029-001-4) 西南交通大学科技发展基金(A2004015)。
关键词 聚类 聚类组合 交集 投票 clustering clustering combination intersection vote
  • 相关文献

参考文献6

  • 1HANJia-wei KAMBERM.数据挖掘概念与技术[M].北京:机械工业出版社,2001.1 51-161. 被引量:36
  • 2Merwe vander D W,Engelbrecht A P.Data clustering using particle swarm optimization[J].IEEE,2003:215-210. 被引量:1
  • 3Strehl A,Ghosh J.Cluster ensembles-a knowledge reuse framework for combining partitionings[C]//Proceedings of Artificial Intelligence.Edmonton:AAAI/MIT Press,2002:93-98. 被引量:1
  • 4Ayad H,Kamel M.Topic discovery from text using aggregation of different clustering methods[C]//Cohen R,Spencer B.Advances in Artificial Intelligence:15th Conference of the Canadian Society for Computational Studies of Intelligence.Calgary,2002:161-175. 被引量:1
  • 5杨燕,靳蕃,Mohamed Kamel.一种基于蚁群算法的聚类组合方法[J].铁道学报,2004,26(4):64-69. 被引量:39
  • 6Murpy P M,Aha D W.UCI repository of machine learning databases[EB/OL].http://www.ics.uci.edu/mlearn/MLRepository.html,Irvine,CA:University of California,1994. 被引量:1

二级参考文献11

  • 1贾利民,李平,聂阿新.新一代的铁路运输系统——铁路智能运输系统[J].交通运输工程与信息学报,2003,1(1):81-86. 被引量:6
  • 2Ramos V, Merelo J J. Self-organized stigmergic document maps: environment as a mechanism for context learning [A]. In: Alba E, Herrera F, Merelo J J, et al. , ed.AEB' 2002 - 1st Spanish conference on evolutionary and bioinspired algorithms[C]. Merida, 2002. 284-293. 被引量:1
  • 3Yang Y, Kamel M. Clustering ensemble using swarm intelligence[A]. In: IEEE swarm intelligence symposium [C]. Piscataway, NJ: IEEE service center, 2003. 65-71. 被引量:1
  • 4Wu B,Shi Z. A clustering algorithm based on swarm intelligence[A]. In: Proceedings IEEE international conferences on info-tech & info-net proceeding[C]. Beijing,2001. 58-66. 被引量:1
  • 5Strehl A, Ghosh J. Cluster ensembles - a knowledge reuse framework for combining partitionings[A]. In: Proceedings of Artificial Intelligence[C]. Edmonton: AAAI/MIT Press, 2002. 93-98. 被引量:1
  • 6Ayad H, Kamel M. Topic discovery from text using aggregation of different clustering methods[A]. In: Cohen R,Spencer B ed. Advances in artificial intelligence: 15th conference of the Canadian society for computational studies of intelligence[C]. Calgary, 2002. 161-175. 被引量:1
  • 7Bonabeau E, Dorigo M, T heraulaz G. Swarm intelligencefrom natural to artificial system[M]. New York: Oxford University Press, 1999. 被引量:1
  • 8Deneubourg J L, Goss S, Franks N, et al. The dynamics of collective sorting: robot-like ant and ant-like robot[A]. In: Meyer J A, Wilson S W ed. Proceedings first conference on simulation of adaptive behavior: from animals to animats[C]. Cambridge, MA: MIT Press, 1991. 356-365. 被引量:1
  • 9Lumer E, Faieta B. Diversity and adaptation in populations of clustering ants[A]. In: Proc. third international conference on simulation of adaptive behavior: from animals to animats 3[C]. Cambridge, MA: MIT Press, 1994. 499-508. 被引量:1
  • 10Murpy P M, Aha D W. UCI repository of machine learning databases [EB/OL]. http://www. ics. uci. edu/mlearn/MLRepository. html, Irvine, CA: University of California, 1994. 被引量:1

共引文献73

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部